
| Citation: | WANG Zhaohui, HAN Guangjie, DU Jiaxin, LIN Chuan, WANG Lei. Intelligent Trust Evaluation Method for Underwater Sensor Networks Based on Fuzzy Clustering and Dynamic Weight Allocation[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 220-228. doi: 10.11993/j.issn.2096-3920.2024-0176 |
| [1] |
苏毅珊, 张贺贺, 张瑞, 等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2023, 45(3): 1121-1133. doi: 10.11999/JEIT211576
SU Y S, ZHANG H H, ZHANG R, et al. Review of security for underwater wireless sensor networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121-1133. doi: 10.11999/JEIT211576
|
| [2] |
ZHU R, BOUKERCHE A, LONG L, et al. Design guidelines on trust management for underwater wireless sensor networks[J]. IEEE Communications Surveys & Tutorials, 2024, 26(4): 2547-2576.
|
| [3] |
JIANG J, HAN G, WANG F, et al. An efficient distributed trust model for wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 26(5): 1228-1237.
|
| [4] |
JIANG J, ZHU X, HAN G, et al. A dynamic trust evaluation and update mechanism based on C4.5 decision tree in underwater wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 9031-9040. doi: 10.1109/TVT.2020.2999566
|
| [5] |
JIANG B, ZHOU R, LUO F, et al. Hybrid trust model for identifying malicious attacks in underwater acoustic sensor network[J]. IEEE Sensors Journal, 2024, 24(16): 26743-26754. doi: 10.1109/JSEN.2024.3424252
|
| [6] |
LIANG K, SUN S, HUANG X, et al. A trust-based malicious detection scheme for underwater acoustic sensor networks[C]//International Conference on Artificial Intelligence and Security. Qinghai, China: CCIS, 2022: 427-440.
|
| [7] |
ZHU R, BOUKERCHE A, LI P, et al. A traffic-aware trust model based on edge computing for underwater wireless sensor networks[C]//ICC 2024-IEEE International Conference on Communications. Denver, CO, USA: IEEE, 2024: 2390-2395.
|
| [8] |
DU J, HAN G, LIN C, et al. ITrust: An anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2020, 21(5): 1684-1696.
|
| [9] |
ZHANG R, ZHANG J, WANG Q, et al. DOIDS: An intrusion detection scheme based on DBSCAN for opportunistic routing in underwater wireless sensor networks[J]. Sensors, 2023, 23(4): 2096. doi: 10.3390/s23042096
|
| [10] |
ZHU R, BOUKERCHE A, HUANG X, et al. DESLR: Energy-efficient and secure layered routing based on channel-aware trust model for UASNs[J]. Computer Networks, 2023, 234(10): 1-11.
|
| [11] |
于洋, 孙思卿, 张立川, 等. 自主水下航行器集群组网技术发展与展望[J]. 水下无人系统学报, 2024, 32(2): 194-207. doi: 10.11993/j.issn.2096-3920.2024-0055
YU Y, SUN S Q, ZHANG L C, et al. Development and prospects of networking technologies for autonomous undersea vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 194-207. doi: 10.11993/j.issn.2096-3920.2024-0055
|
| [12] |
PRICE J F, WELLER R A, SCHUDLICH R R. Wind-driven ocean currents and Ekman transport[J]. Science, 1987, 238(4833): 1534-1538. doi: 10.1126/science.238.4833.1534
|
| [13] |
HAN G, SHEN S, SONG H, et al. A stratification-based data collection scheme in underwater acoustic sensor networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10671-10682. doi: 10.1109/TVT.2018.2867021
|
| [14] |
CARUSO A, PAPARELLA F, VIEIRA L F M, et al. The meandering current mobility model and its impact on underwater mobile sensor networks[C]//IEEE INFOCOM 2008-The 27th Conference on Computer Communications. Phoenix, AZ, USA: IEEE, 2008: 221-225.
|
| [15] |
LUO J, YANG Y, WANG Z, et al. Localization algorithm for underwater sensor network: A review[J]. IEEE Internet of Things Journal, 2021, 8(17): 13126-13144. doi: 10.1109/JIOT.2021.3081918
|
| [16] |
CUSHMAN-ROISIN B, BECKERS J M. Introduction to geophysical fluid dynamics: Physical and numerical aspects[M]. Waltham, MA, USA: Academic press, 2011.
|
| [17] |
COUTINHO R W L, BOUKERCHE A. OMUS: Efficient opportunistic routing in multi-modal underwater sensor networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5642-5655. doi: 10.1109/TWC.2021.3069117
|
| [18] |
JIANG J, HAN G, SHU L, et al. A trust model based on cloud theory in underwater acoustic sensor networks[J]. IEEE Transactions on Industrial Informatics, 2015, 13(1): 342-350.
|
| [19] |
HAN G, JIANG J, SHU L, et al. An attack-resistant trust model based on multidimensional trust metrics in underwater acoustic sensor network[J]. IEEE Transactions on Mobile Computing, 2015, 14(12): 2447-2459. doi: 10.1109/TMC.2015.2402120
|
| [20] |
ROUSSEEUW P J , HUBERT M. Anomaly detection by robust statistics[J]. Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery, 2017, 8(2): 1236.
|
| [21] |
BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. Berlin, Germany: Springer Science & Business Media, 2013.
|
| [22] |
HUNG W L, YANG M S, CHEN D H. Bootstrapping approach to feature-weight selection in fuzzy C-means algorithms with an application in color image segmentation[J]. Pattern Recognition Letters, 2008, 29(9): 1317-1325. doi: 10.1016/j.patrec.2008.02.003
|
| [23] |
ZHANG B, LI C C, DONG Y, et al. A comparative study between analytic hierarchy process and its fuzzy variants: A perspective based on two linguistic models[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(11): 3270-3279.
|
| [24] |
HE X, CAI D, NIYOGI P, et al. Laplacian score for feature selection[C]//Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2005: 507-514.
|