
| Citation: | LIU Lanjun, CHENG Zining, CHEN Jialin, LI Ming, LIU Honghao. Design of Intelligent Interpretation Network for Underwater Acoustic Communication Receiver with Multiple Signal Modulations[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 280-290. doi: 10.11993/j.issn.2096-3920.2024-0174 |
| [1] |
朱敏, 武岩波. 水声通信技术进展[J]. 中国科学院院刊, 2019, 34(3): 289-296.
ZHU M, WU Y B. Development of underwater acoustic communication technology[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 289-296.
|
| [2] |
LIU L, SUN D, ZHANG Y. A family of sparse group lasso RLS algorithms with adaptive regularization parameters for adaptive decision feedback equalizer in the underwater acoustic communication system[J]. Physical Communication, 2017, 23: 114-124. doi: 10.1016/j.phycom.2017.03.005
|
| [3] |
LI B, YANG H, LIU G, et al. A new joint channel equalization and estimation algorithm for underwater acoustic channels[J]. Eurasip Journal on Wireless Communications and Networking, 2017, 169: 1-6.
|
| [4] |
PRANITHA B, ANJANEYULU L. Analysis of underwater acoustic communication system using equalization technique for ISI reduction[J]. Procedia Computer Science, 2020, 167: 1128-1138. doi: 10.1016/j.procs.2020.03.415
|
| [5] |
YE H, LI G Y, JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communications Letters, 2017, 7(1): 114-117.
|
| [6] |
朱雨男, 王彪, 张岑. 基于深度神经网络的水声FBMC通信信号检测方法[J]. 声学技术, 2021, 40(2): 199-204.
ZHU Y N, WANG B, ZHANG C. DNN based signal detection for underwater acoustic FBMC communications[J]. Technical Acoustics, 2021, 40(2): 199-204.
|
| [7] |
ZHANG Y, LI J, ZAKHAROV Y, et al. Underwater acoustic OFDM communications using deep learning[C]//The 2nd Franco-Chinese Acoustic Conference(FCAC). Le Mans, France: Le Mans Université, 2018.
|
| [8] |
JIANG R, WANG X, CAO S, et al. Deep neural networks for channel estimation in underwater acoustic OFDM systems[J]. IEEE Access, 2019, 7: 23579-94. doi: 10.1109/ACCESS.2019.2899990
|
| [9] |
ZHANG J, CAO Y, HAN G, et al. Deep neural network-based underwater OFDM receiver[J]. IET Communications, 2019, 13(13): 1998-2002. doi: 10.1049/iet-com.2019.0243
|
| [10] |
ZHOU M, WANG J, SUN H, et al. A novel DNN based channel estimator for underwater acoustic communications with IM-OFDM[C]//IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Macau, China: IEEE, 2020: 1-6.
|
| [11] |
HASSAN S, CHEN P, RONG Y, et al. Underwater acoustic OFDM receiver using a regression-based deep neural network[C]//OCEANS 2022. Hampton Roads, VA, USA: IEEE, 2022: 1-6.
|
| [12] |
WANG Z, LIU L, CHENG Z, et al. Intelligent receiver design for underwater acoustic OFDM communication based on LSTM networks[C]//IEEE International Conference on Signal Processing, Communications and Computing(ICSPCC). Zhengzhou, China: IEEE, 2023: 1-6.
|
| [13] |
HASSAN S, CHEN P, RONG Y, et al. Doppler shift compensation using an LSTM-Based deep neural network in underwater acoustic communication systems[C]//OCEANS 2023. Limerick, Ireland: IEEE, 2023: 1-7.
|
| [14] |
ZHANG Y, LI C, WANG H, et al. Deep learning aided OFDM receiver for underwater acoustic communications[J]. Applied Acoustics, 2022, 187: 108515. doi: 10.1016/j.apacoust.2021.108515
|
| [15] |
OUYANG D, LI Y, WANG Z. Channel estimation for underwater acoustic OFDM communications: An image super-resolution approach[C]//ICC 2021-IEEE International Conference on Communications. Online: IEEE, 2021: 1-6.
|
| [16] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
|
| [17] |
HOCHREITER S. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-80. doi: 10.1162/neco.1997.9.8.1735
|
| [18] |
QARABAQI P, STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701-717. doi: 10.1109/JOE.2013.2278787
|