Citation: | YANG Shuo, WANG Honghui, LIU Xinyu, FANG Xin, LI Guanghao, LIU Guijie. Fixed Depth Control Strategy for Remotely Operated Vehicle Based on Improved Model Predictive Control Algorithm[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 420-432. doi: 10.11993/j.issn.2096-3920.2024-0172 |
[1] |
MANIMARAN R. Hydrodynamic investigations on the performance of an underwater remote operated vehicle under the wave using Open FOAM[J]. Ships and Offshore Structures, 2022, 17(10): 2186-2202. doi: 10.1080/17445302.2021.1979921
|
[2] |
LIU K, DING M, PAN B, et al. A maneuverable underwater vehicle for near-seabed observation[J]. Nature Communications, 2024, 15(1): 10284. doi: 10.1038/s41467-024-54600-8
|
[3] |
CHO G R, LI J H, PARK D, et al. Robust trajectory tracking of autonomous underwater vehicles using back-stepping control and time delay estimation[J]. Ocean Engineering, 2020, 201: 107131. doi: 10.1016/j.oceaneng.2020.107131
|
[4] |
SUN B, MEI M, ZHU D. A cascaded adaptive UUV tracking control design with ocean current[C]//2015 34th Chinese Control Conference(CCC). Hangzhou, China: IEEE, 2015: 4280-4285.
|
[5] |
CHEN K, WANG Y, FU Y, et al. Depth control of bionic robotic fish based on fuzzy PID algorithm[J]. Journal of Physics: Conference Series, 2024, 2781(1): 012050.
|
[6] |
ZHU D, GAN W, HU Z, et al. A hybrid control strategy of 7000 m-human occupied vehicle tracking control[J]. IEEE Transactions on Intelligent Vehicles, 2019, 5(2): 251-264.
|
[7] |
HASAN M W, ABBAS N H. Disturbance rejection for underwater robotic vehicle based on adaptive fuzzy with nonlinear PID controller[J]. ISA Transactions, 2022, 130: 360-376. doi: 10.1016/j.isatra.2022.03.020
|
[8] |
GAN W, ZHU D, HU Z, et al. Model predictive adaptive constraint tracking control for underwater vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 67(9): 7829-7840.
|
[9] |
WANG Y, ZHANG Y. Coordinated depth control of multiple autonomous underwater vehicles by using theory of adaptive sliding mode[J]. Complexity, 2018, 2018(1): 4180275. doi: 10.1155/2018/4180275
|
[10] |
ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Trajectory tracking sliding mode control of underactuated AUVs[J]. Nonlinear Dynamics, 2016, 84(2): 1079-1091. doi: 10.1007/s11071-015-2551-x
|
[11] |
WEI Y, AN D, LIU J, et al. Intelligent control method of underwater inspection robot in netcage[J]. Aquaculture Research, 2022, 53(5): 1928-1938. doi: 10.1111/are.15721
|
[12] |
邓旭, 刘子钰. 基于自适应离散滑模趋近律的UUV深度控制[J]. 船舶工程, 2024, 46(S1): 454-459.
|
[13] |
闫景昊, 王伟然, 杨冠军, 等. 基于拉盖尔函数的AUV自适应预测轨迹跟踪[J]. 电光与控制, 2023, 30(1): 15-20. doi: 10.3969/j.issn.1671-637X.2023.01.003
YAN J H, WANG W R, YANG G J, et al. Adaptive predictive trajectory tracking of AUV based on Laguerre function[J]. Electronics Optics & Control, 2023, 30(1): 15-20. doi: 10.3969/j.issn.1671-637X.2023.01.003
|
[14] |
刘甜田, 陆群, 赵伟, 等. 一种基于固定时间稳定理论的移动机器人NMPC方法[J]. 计算机与数字工程, 2022, 50(11): 2423-2427. doi: 10.3969/j.issn.1672-9722.2022.11.014
LIU T T, LU Q, ZHAO W, et al. A NMPC method for mobile robots based on fixed-time stability theory[J]. Computer and Digital Engineering, 2022, 50(11): 2423-2427. doi: 10.3969/j.issn.1672-9722.2022.11.014
|
[15] |
ZHU D Q, ZHANG H P, LIU C X. Tracking controller based on model prediction control for remotely operated vehicle for thruster fault[J]. Journal of Marine Science and Technology, 2022, 27(2): 840-855. doi: 10.1007/s00773-022-00879-5
|
[16] |
孙志伟, 李聪. 基于横纵向MPC的智能车换道控制算法[J]. 计算机仿真, 2023, 40(4): 461-468. doi: 10.3969/j.issn.1006-9348.2023.04.089
SUN Z W, LI C. Lane change control algorithm of intelligent vehicle based on lateral and longitudinal MPC[J]. Computer Simulation, 2023, 40(4): 461-468. doi: 10.3969/j.issn.1006-9348.2023.04.089
|
[17] |
张硕, 吴雨洋, 汪洋, 等. 基于模型预测控制的无人车编队避障方法[J]. 北京理工大学学报, 2025, 45(1): 34-41.
ZHANG S, WU Y Y, WANG Y, et al. Formation obstacle avoidance based on model predictive control for unmanned vehicles[J]. Transactions of Beijing Institute of Technology, 2025, 45(1): 34-41.
|
[18] |
PAN J, ZHANG P, WANG J, et al. Learning for depth control of a robotic penguin: A data-driven model predictive control approach[J]. IEEE Transactions on Industrial Electronics, 2022, 70(11): 11422-11432.
|
[19] |
TRAN H N, PHAM T N N, CHOI S H. Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty[J]. Ocean Engineering, 2021, 220: 108257. doi: 10.1016/j.oceaneng.2020.108257
|
[20] |
王红都, 高枫, 黎明, 等. 基于ESO的水下机器人机械臂系统鲁棒模型预测控制[J]. 水下无人系统学报, 2023, 31(6): 827-838. doi: 10.11993/j.issn.2096-3920.2022-0074
WANG H D, GAO F, LI M, et al. ESO-based robust model predictive control for undersea vehicle manipulator system[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 827-838. doi: 10.11993/j.issn.2096-3920.2022-0074
|
[21] |
GAN W Y, ZHU D Q, JI D X. QPSO-model predictivecontrol-based approach to dynamic trajectory trackingcontrol for unmanned underwater vehicles[J]. Ocean Engineering, 2018, 158: 208-220. doi: 10.1016/j.oceaneng.2018.03.078
|
[22] |
唐军, 陈善颖, 谢彬, 等. 基于有限时间干扰观测器的改进模型水下机器人自适应鲁棒容错控制[J]. 科学技术与工程, 2024, 24(11): 4574-4582. doi: 10.12404/j.issn.1671-1815.2302720
TANG J, CHEN S Y, XIE B, et al. Improved model unmanned underwater vehicle adaptive robust fault-tolerant control based on finite time disturbance observer[J]. Science Technology and Engineering, 2024, 24(11): 4574-4582. doi: 10.12404/j.issn.1671-1815.2302720
|
[23] |
FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: John Wiley & Sons Inc, 1994.
|
[24] |
SADIQ A S, DEHKORDI A A, MIRJALILI S, et al. Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks[J]. Expert Systems with Applications, 2022, 203: 117395. doi: 10.1016/j.eswa.2022.117395
|
[25] |
尹晖, 熊治国, 高翔, 等. 基于PSO的自抗扰飞行控制律参数优化方法[J]. 空军工程大学学报, 2013, 14(3): 19-22, 32.
YIN H, XIONG Z G, GAO X, et al. Parameters optimization of flight control law using ADRC for super-maneuverable aircraft based on PSO[J]. Journal of Air Force Engineering University, 2013, 14(3): 19-22, 32.
|
[26] |
CHEN W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 706-710. doi: 10.1109/TMECH.2004.839034
|
[27] |
WU C J. 6-DOF modelling and control of a remotely operated vehicle[D]. Adelaide, Australia: Flinders University, 2018.
|
[28] |
RICHARDSON M D, BRIGGS K B. In-situ and laboratory geotechnical measurements of seafloor sediments: Implications for underwater vehicle operations[J]. IEEE Journal of Oceanic Engineering, 1999, 24(4): 404-415.
|
[29] |
BLONDEL P, MURTON B J. Handbook of seafloor sonar imagery[M]. Newyork, USA: Wiley, 1997.
|