• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 3
Jun  2025
Turn off MathJax
Article Contents
YANG Shuo, WANG Honghui, LIU Xinyu, FANG Xin, LI Guanghao, LIU Guijie. Fixed Depth Control Strategy for Remotely Operated Vehicle Based on Improved Model Predictive Control Algorithm[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 420-432. doi: 10.11993/j.issn.2096-3920.2024-0172
Citation: YANG Shuo, WANG Honghui, LIU Xinyu, FANG Xin, LI Guanghao, LIU Guijie. Fixed Depth Control Strategy for Remotely Operated Vehicle Based on Improved Model Predictive Control Algorithm[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 420-432. doi: 10.11993/j.issn.2096-3920.2024-0172

Fixed Depth Control Strategy for Remotely Operated Vehicle Based on Improved Model Predictive Control Algorithm

doi: 10.11993/j.issn.2096-3920.2024-0172
  • Received Date: 2024-12-19
  • Accepted Date: 2025-02-08
  • Rev Recd Date: 2025-01-25
  • Available Online: 2025-05-27
  • To address the issue of poor depth control stability in remotely operated vehicles(ROVs) with cables due to external disturbances in complex marine environments, a composite control strategy based on an improved model predictive control(MPC) was proposed. This strategy aims to achieve high-precision fixed depth control while significantly enhancing the robustness and disturbance rejection capability of ROVs under sudden external disturbances. First, a nonlinear marine predator algorithm(NMPA) was introduced to optimize key control parameters of MPC, ensuring fast and precise depth tracking of ROVs in complex marine environments. Secondly, by considering the impact of large external disturbances on the performance of the traditional MPC algorithm, the strategy incorporated a nonlinear disturbance observer(NDO) to compensate for external disturbances in real time, improving the ROV’s control performance and robustness. Simulation results demonstrate that the proposed strategy reduces the steady-state time of the ROV by approximately 30% compared to traditional MPC and decreases the overshoot by about 10%. Under disturbance conditions, the maximum overshoot is reduced by about 27.7%. The proposed strategy significantly enhances the ROV’s fixed depth control performance, exhibiting higher tracking accuracy and better disturbance rejection capability.

     

  • loading
  • [1]
    MANIMARAN R. Hydrodynamic investigations on the performance of an underwater remote operated vehicle under the wave using Open FOAM[J]. Ships and Offshore Structures, 2022, 17(10): 2186-2202. doi: 10.1080/17445302.2021.1979921
    [2]
    LIU K, DING M, PAN B, et al. A maneuverable underwater vehicle for near-seabed observation[J]. Nature Communications, 2024, 15(1): 10284. doi: 10.1038/s41467-024-54600-8
    [3]
    CHO G R, LI J H, PARK D, et al. Robust trajectory tracking of autonomous underwater vehicles using back-stepping control and time delay estimation[J]. Ocean Engineering, 2020, 201: 107131. doi: 10.1016/j.oceaneng.2020.107131
    [4]
    SUN B, MEI M, ZHU D. A cascaded adaptive UUV tracking control design with ocean current[C]//2015 34th Chinese Control Conference(CCC). Hangzhou, China: IEEE, 2015: 4280-4285.
    [5]
    CHEN K, WANG Y, FU Y, et al. Depth control of bionic robotic fish based on fuzzy PID algorithm[J]. Journal of Physics: Conference Series, 2024, 2781(1): 012050.
    [6]
    ZHU D, GAN W, HU Z, et al. A hybrid control strategy of 7000 m-human occupied vehicle tracking control[J]. IEEE Transactions on Intelligent Vehicles, 2019, 5(2): 251-264.
    [7]
    HASAN M W, ABBAS N H. Disturbance rejection for underwater robotic vehicle based on adaptive fuzzy with nonlinear PID controller[J]. ISA Transactions, 2022, 130: 360-376. doi: 10.1016/j.isatra.2022.03.020
    [8]
    GAN W, ZHU D, HU Z, et al. Model predictive adaptive constraint tracking control for underwater vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 67(9): 7829-7840.
    [9]
    WANG Y, ZHANG Y. Coordinated depth control of multiple autonomous underwater vehicles by using theory of adaptive sliding mode[J]. Complexity, 2018, 2018(1): 4180275. doi: 10.1155/2018/4180275
    [10]
    ELMOKADEM T, ZRIBI M, YOUCEF-TOUMI K. Trajectory tracking sliding mode control of underactuated AUVs[J]. Nonlinear Dynamics, 2016, 84(2): 1079-1091. doi: 10.1007/s11071-015-2551-x
    [11]
    WEI Y, AN D, LIU J, et al. Intelligent control method of underwater inspection robot in netcage[J]. Aquaculture Research, 2022, 53(5): 1928-1938. doi: 10.1111/are.15721
    [12]
    邓旭, 刘子钰. 基于自适应离散滑模趋近律的UUV深度控制[J]. 船舶工程, 2024, 46(S1): 454-459.
    [13]
    闫景昊, 王伟然, 杨冠军, 等. 基于拉盖尔函数的AUV自适应预测轨迹跟踪[J]. 电光与控制, 2023, 30(1): 15-20. doi: 10.3969/j.issn.1671-637X.2023.01.003

    YAN J H, WANG W R, YANG G J, et al. Adaptive predictive trajectory tracking of AUV based on Laguerre function[J]. Electronics Optics & Control, 2023, 30(1): 15-20. doi: 10.3969/j.issn.1671-637X.2023.01.003
    [14]
    刘甜田, 陆群, 赵伟, 等. 一种基于固定时间稳定理论的移动机器人NMPC方法[J]. 计算机与数字工程, 2022, 50(11): 2423-2427. doi: 10.3969/j.issn.1672-9722.2022.11.014

    LIU T T, LU Q, ZHAO W, et al. A NMPC method for mobile robots based on fixed-time stability theory[J]. Computer and Digital Engineering, 2022, 50(11): 2423-2427. doi: 10.3969/j.issn.1672-9722.2022.11.014
    [15]
    ZHU D Q, ZHANG H P, LIU C X. Tracking controller based on model prediction control for remotely operated vehicle for thruster fault[J]. Journal of Marine Science and Technology, 2022, 27(2): 840-855. doi: 10.1007/s00773-022-00879-5
    [16]
    孙志伟, 李聪. 基于横纵向MPC的智能车换道控制算法[J]. 计算机仿真, 2023, 40(4): 461-468. doi: 10.3969/j.issn.1006-9348.2023.04.089

    SUN Z W, LI C. Lane change control algorithm of intelligent vehicle based on lateral and longitudinal MPC[J]. Computer Simulation, 2023, 40(4): 461-468. doi: 10.3969/j.issn.1006-9348.2023.04.089
    [17]
    张硕, 吴雨洋, 汪洋, 等. 基于模型预测控制的无人车编队避障方法[J]. 北京理工大学学报, 2025, 45(1): 34-41.

    ZHANG S, WU Y Y, WANG Y, et al. Formation obstacle avoidance based on model predictive control for unmanned vehicles[J]. Transactions of Beijing Institute of Technology, 2025, 45(1): 34-41.
    [18]
    PAN J, ZHANG P, WANG J, et al. Learning for depth control of a robotic penguin: A data-driven model predictive control approach[J]. IEEE Transactions on Industrial Electronics, 2022, 70(11): 11422-11432.
    [19]
    TRAN H N, PHAM T N N, CHOI S H. Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty[J]. Ocean Engineering, 2021, 220: 108257. doi: 10.1016/j.oceaneng.2020.108257
    [20]
    王红都, 高枫, 黎明, 等. 基于ESO的水下机器人机械臂系统鲁棒模型预测控制[J]. 水下无人系统学报, 2023, 31(6): 827-838. doi: 10.11993/j.issn.2096-3920.2022-0074

    WANG H D, GAO F, LI M, et al. ESO-based robust model predictive control for undersea vehicle manipulator system[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 827-838. doi: 10.11993/j.issn.2096-3920.2022-0074
    [21]
    GAN W Y, ZHU D Q, JI D X. QPSO-model predictivecontrol-based approach to dynamic trajectory trackingcontrol for unmanned underwater vehicles[J]. Ocean Engineering, 2018, 158: 208-220. doi: 10.1016/j.oceaneng.2018.03.078
    [22]
    唐军, 陈善颖, 谢彬, 等. 基于有限时间干扰观测器的改进模型水下机器人自适应鲁棒容错控制[J]. 科学技术与工程, 2024, 24(11): 4574-4582. doi: 10.12404/j.issn.1671-1815.2302720

    TANG J, CHEN S Y, XIE B, et al. Improved model unmanned underwater vehicle adaptive robust fault-tolerant control based on finite time disturbance observer[J]. Science Technology and Engineering, 2024, 24(11): 4574-4582. doi: 10.12404/j.issn.1671-1815.2302720
    [23]
    FOSSEN T I. Guidance and control of ocean vehicles[M]. New York: John Wiley & Sons Inc, 1994.
    [24]
    SADIQ A S, DEHKORDI A A, MIRJALILI S, et al. Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks[J]. Expert Systems with Applications, 2022, 203: 117395. doi: 10.1016/j.eswa.2022.117395
    [25]
    尹晖, 熊治国, 高翔, 等. 基于PSO的自抗扰飞行控制律参数优化方法[J]. 空军工程大学学报, 2013, 14(3): 19-22, 32.

    YIN H, XIONG Z G, GAO X, et al. Parameters optimization of flight control law using ADRC for super-maneuverable aircraft based on PSO[J]. Journal of Air Force Engineering University, 2013, 14(3): 19-22, 32.
    [26]
    CHEN W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 706-710. doi: 10.1109/TMECH.2004.839034
    [27]
    WU C J. 6-DOF modelling and control of a remotely operated vehicle[D]. Adelaide, Australia: Flinders University, 2018.
    [28]
    RICHARDSON M D, BRIGGS K B. In-situ and laboratory geotechnical measurements of seafloor sediments: Implications for underwater vehicle operations[J]. IEEE Journal of Oceanic Engineering, 1999, 24(4): 404-415.
    [29]
    BLONDEL P, MURTON B J. Handbook of seafloor sonar imagery[M]. Newyork, USA: Wiley, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article Views(26) PDF Downloads(14) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return