• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
WANG Chenyu, PENG Likun, CHEN Jiabao, CHEN Jia, WANG Huarui, PAN Wei. Research on drag reduction optimization of foldable solar fins for UUV[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0168
Citation: WANG Chenyu, PENG Likun, CHEN Jiabao, CHEN Jia, WANG Huarui, PAN Wei. Research on drag reduction optimization of foldable solar fins for UUV[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0168

Research on drag reduction optimization of foldable solar fins for UUV

doi: 10.11993/j.issn.2096-3920.2024-0168
  • Received Date: 2024-12-15
  • Accepted Date: 2025-03-04
  • Rev Recd Date: 2025-02-27
  • Available Online: 2025-07-01
  • Focusing on the endurance bottleneck faced by unmanned underwater vehicles in missions such as ocean observation and resource exploration, this paper concentrates on the hydrodynamic performance optimization of a novel foldable solar wing. To balance computational efficiency and optimization accuracy, a parametric model of the wing is established in CAESES software with variables including wing point coordinates, rounding factors of wing edges, wing gaps, and gaps between the wing and the hull. Innovatively, a hybrid optimization framework combining Sobol global sampling and the NSGA-II optimization algorithm is constructed: Firstly, the Sobol algorithm is used to generate 80 sample points within the threshold space of each variable to fully explore the design space, followed by multi-generation optimization through NSGA-II. To avoid the accuracy degradation of traditional surrogate models, a coupled computational process integrating high-precision hydrodynamic solutions and optimization algorithms is established, enabling automatic co-simulation between CAESES and STAR-CCM+ software. Hydrodynamic analyses are conducted on UUVs equipped with wings of different shapes to explore the impact of different parameter combinations on total drag. The optimization results indicate that a certain height difference between the two wing sections protruding from the hull is beneficial for reducing total drag. Flow field analysis shows that the optimized shape effectively suppresses energy dissipation caused by turbulence. The proposed technical route of parametric modeling, intelligent optimization, and high-precision verification not only reduces the straight-line drag of the new configuration UUV but also provides a methodological reference for the optimization of complex appendages, possessing significant engineering value for improving the energy utilization efficiency of underwater equipment.

     

  • loading
  • [1]
    SAHOO A, DWIVEDY S K, ROBI P S. Advancements in the field of autonomous underwater vehicle[J]. Ocean Engineering, 2019, 181: 145-160. doi: 10.1016/j.oceaneng.2019.04.011
    [2]
    WANG X, WANG Y, WANG P, et al. Sailing efficiency optimization and experimental validation of a Petrel long-range autonomous underwater vehicle[J]. Ocean Engineering, 2023, 281: 114604. doi: 10.1016/j.oceaneng.2023.114604
    [3]
    HOU S, ZHANG Z, LIAN H, et al. Hull shape optimization of small underwater vehicle based on kriging-based response surface method and multi-objective optimization algorithm[J]. Brodogradnja, 2022, 73(3): 111-134. doi: 10.21278/brod73307
    [4]
    SUN S, LUO W. Multidisciplinary design optimization of underwater vehicles based on a combined proxy model[J]. Journal of Marine Science and Engineering, 2024, 12(7): 1087. doi: 10.3390/jmse12071087
    [5]
    CRIMMINS D M, PATTY C T, BELIARD M A, et al. Long-endurance test results of the solar-powered AUV system[C]//Oceans 2006. Boston, USA: IEEE, 2006: 1-5.
    [6]
    施迅, 周悦, 吴诗昊, 等. 三体模块化渔业监测AUV结构设计及外形优化[J]. 上海海洋大学学报, 2024, 33(6): 1429-1438.

    SHI X, ZHOU Y, WU S H, et al. Structure design and shape optimization of three-body modular fishery monitoring AUV[J]. Journal of Shanghai Ocean University, 2019, 33(6): 1429-1438.
    [7]
    CHEN S, FENG L. Multi-objective shape optimization of underwater vehicles based on an adaptive sampling algorithm[J]. Applied Ocean Research, 2024, 146: 103950. doi: 10.1016/j.apor.2024.103950
    [8]
    WEN Q B, FENG R, AN X, et al. Optimal design of an autonomous underwater helicopter’s shape based on combinatorial optimization strategy[J]. Ocean Engineering, 2022, 266: 113015. doi: 10.1016/j.oceaneng.2022.113015
    [9]
    张宁, 王鹏, 宋保维. 基于改进型Kriging-HDMR的翼身融合水下滑翔机外形优化设计 [J]. 水下无人系统学报, 2019, 27 (05): 496-502.

    WEN Q B, FENG R, AN X, et al. Optimal design of an autonomous underwater helicopter’s shape based on combinatorial optimization strategy[J]. Ocean Engineering, 2022, 266: 113015.
    [10]
    凌宏杰, 王志东, 张贝, 等. 基于组合优化算法的翼身融合水下滑翔机优化研究[J]. 西北工业大学学报, 2022, 40(5): 1125-1132.

    WANG G B, WANG Y H, YANG M, et al. Design and motion performance of a novel variable-area tail for underwater gliders[J]. IEEE/ASME Transactions on Mechatronics, 2025, 30(3): 2132-2143. LING H J, WANG Z D, ZHANG B, et al. Research on optimization of wing-body fusion underwater glider based on combinatorial optimization algorithm [J]. Journal of Northwestern Polytechnical University, 2022, 40(5): 1125-1132.
    [11]
    HENKES R, HOOGENDOORN C. Numerical determination of wall functions for the turbulent natural-convection boundary-layer[J]. International Journal of Heat and Mass Transfer, 1990, 33(6): 1087-1097. doi: 10.1016/0017-9310(90)90242-M
    [12]
    KHARGHANI M, PASANDIDEHFARD M, NAEIMIRAD M. Turbulent transient boundary layer over a flat plate[J]. Ocean Engineering, 2022, 244: 110192. doi: 10.1016/j.oceaneng.2021.110192
    [13]
    LIU H L, HUANG T T. Summary of DARPA suboff experimental program data[R]. West Bethesda: Naval Surface Warfare Center, Carderock Division, 1998.
    [14]
    杨敬东, 赵登, 彭伟, 等. 基于CFD的游艇阻力预报及球鼻艏型线变形[J]. 重庆交通大学学报(自然科学版), 2023, 42(2): 144-148.

    YANG J D, ZHAO D, PENG W, et al. Yacht resistance prediction and bulbous bow profile deformation based on CFD[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2023, 42(2): 144-148.
    [15]
    刘悦. 基于智能优化方法船舶阻力性能优化设计研究[D]. 大连: 大连理工大学, 2021.
    [16]
    陈骏喆, 姜栋, 张儒, 等. 小样本规模船型优化策略的选择研究[J]. 中国造船, 2023, 64(4): 248-257. doi: 10.3969/j.issn.1000-4882.2023.04.023

    CHEN J Z, JIANG D, ZHANG R, et al. Study on the selection of ship form optimization strategy with small sample size[J]. Shipbuilding in China, 2023, 64(4): 248-257. doi: 10.3969/j.issn.1000-4882.2023.04.023
    [17]
    孙海莎. 基于CFD的散货船首部型线优化[D]. 武汉: 华中科技大学, 2022.
    [18]
    PRAKS P, BRKIC D. Approximate flow friction factor: estimation of the accuracy using Sobol’s Quasi-Random sampling[J]. Axioms, 2022, 11(2): 36. doi: 10.3390/axioms11020036
    [19]
    ZHENG W, DOERR B. Mathematical runtime analysis for the non-dominated sorting genetic algorithm II (NSGA-II)[J]. Artificial Intelligence, 2023, 325: 104016. doi: 10.1016/j.artint.2023.104016
    [20]
    张帅. 长航程水下滑翔机的减阻技术研究[D]. 天津: 天津大学, 2018.
    [21]
    ŞUMNU, A. Passive flow control of Ahmed body using control rod[J]. International Journal of Automotive and Mechanical Engineering, 2022, 19(4): 10063-10072. doi: 10.15282/ijame.19.4.2022.03.0777
    [22]
    XIE Z, LIU Y, WANG S, et al. Bio-inspired profile improving the flow near the stern of an underwater vehicle[J]. Ocean Engineering, 2024, 314: 119693. doi: 10.1016/j.oceaneng.2024.119693
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article Views(14) PDF Downloads(1) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return