
| Citation: | HAN Jingqi, NAN Mingxing, ZHANG Peng, CHEN Jiajie, HU Zhengliang. A Sonar Image Target Detection Method with Low False Alarm Rate Based on Self-Trained YOLO11 Model[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 238-248. doi: 10.11993/j.issn.2096-3920.2024-0165 |
| [1] |
LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[J]. International Journal of Computer Vision. 2020, 128(3): 642-656.
|
| [2] |
BARHOUMI C, BENAYED Y. Real-time speech emotion recognition using deep learning and data augmentation[J]. Artificial Intelligence Review. 2025, 58: 49.
|
| [3] |
SHAO Y, ZHANG D, CHU H, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics and Information Technology, 2022, 44(10): 3697-3708.
|
| [4] |
ZHANG P, TANG J, ZHONG H, et al. Self-trained target detection of radar and sonar images using automatic deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(1): 1-14.
|
| [5] |
HUO G, WU Z, LI J. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data[J]. IEEE Access, 2020, 8: 47407-47418. doi: 10.1109/ACCESS.2020.2978880
|
| [6] |
WILLIAMS D. P. Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks[C]//2016 23rd International Conference on Pattern Recognition(ICPR). Cancun, Mexico: ICPR, 2016: 2497-2502.
|
| [7] |
WANG X, JIAO J, YIN J, et al. Underwater sonar image classification using adaptive weights convolutional neural network[J]. Applied Acoustics, 2019, 146: 145-154. doi: 10.1016/j.apacoust.2018.11.003
|
| [8] |
JOCHER G, QIU J. Ultralytics YOLO11[CP/OL]. (2024) [2025-01-30]. https://github.com/ultralytics/ultralytics .
|
| [9] |
LI Z, CHEN D, YIP T, et al. Sparsity regularization-based real-time target recognition for side scan sonar with embedded GPU[J]. Journal of Marine Science and Engineering, 2023, 11(3): 487.
|
| [10] |
CHEN Z, XIE G, DENG X, et al. DA-YOLOv7: A deep learning-driven high-performance underwater sonar image target recognition model[J]. Journal of Marine Science and Engineering, 2024, 12(9): 1606. doi: 10.3390/jmse12091606
|
| [11] |
ZHENG K, LIANG H, ZHAO H, et al. Application and analysis of the MFF-YOLOv7 model in underwater sonar image target detection[J]. Journal of Marine Science and Engineering, 2024, 12(12): 2326.
|
| [12] |
KARIMANZIRA D, RENKEWITZ H, SHEA D, et al. Object detection in sonar images[J]. Electronics, 2020, 9(7): 1180.
|
| [13] |
王闰成. 侧扫声呐图像变形现象与实例分析[J]. 海洋测绘, 2002(5): 42-45. doi: 10.3969/j.issn.1671-3044.2002.05.011
WANG R C. Analysis of distortion phenomena and case studies in side-scan sonar images[J]. Hydrographic Surveying and Charting, 2002(5): 42-45. doi: 10.3969/j.issn.1671-3044.2002.05.011
|
| [14] |
HOŻYŃ S. A review of underwater mine detection and classification in sonar imagery[J]. Electronics, 2021, 10(23): 2943.
|
| [15] |
PALOMERAS N, FURFARO T, WILLIAMS D P, et al. Automatic target recognition for mine countermeasure missions using forward-looking sonar data[J]. IEEE Journal of Oceanic Engineering, 2022, 47(1):141-161.
|
| [16] |
SONG Y, HE B, LIU P. Real-time object detection for AUVs using self-cascaded convolutional neural networks[J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 56-67. doi: 10.1109/JOE.2019.2950974
|
| [17] |
MA Q, JIANG L, YU W, et al. Training with noise adversarial network: A generalization method for object detection on sonar image[C]//IEEE Winter Conference on Applications of Computer Vision. Snowmass Village, CO, USA, 2020: 718-727.
|
| [18] |
HUANG C, ZHAO J, ZHANG H, et al. Seg2Sonar: A full-class sample synthesis method applied to underwater sonar image target detection, recognition, and segmentation tasks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-19.
|
| [19] |
YU Y, ZHAO J, GONG Q, et al. Real-time underwater maritime object detection in side-scan sonar images based on transformer-YOLOv5[J]. Remote Sensing, 2021, 13(18): 3555.
|
| [20] |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255.
|
| [21] |
FERREIRA F, MACHADO D, FERRI G, et al. Underwater optical and acoustic imaging: A time for fusion? A brief overview of the state-of-the-art[C]//OCEANS 2016 MTS/IEEE Monterey. Monterey, California, USA: IEEE, 2016:1-6.
|
| [22] |
REED S, PETILLOT Y, BELL J. Automated approach to classification of mine-like objects in sidescan sonar using highlight and shadow information[J]. Radar, Sonar and Navigation, 2004, 151: 48-56.
|
| [23] |
JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLOv8[CP/OL]. [2025-01-30]. https://github.com/ultralytics/ultralytics.
|
| [24] |
JOCHER G. Ultralytics YOLOv5[CP/OL]. [2025-01-30]. https://github.com/ultralytics/yolov5.
|
| [25] |
WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[EB/OL]. (2024-10-30)[2025-01-30]. https://arxiv.org/abs/2405.14458.
|
| [26] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
|