• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 33 Issue 2
May  2025
Turn off MathJax
Article Contents
HU Jiantao, LI Tianjiao, LIU Hui, LI Shuxin, CHENG Xu. Prediction of Lightweight AIS-Based Ship Trajectories with Spline Interpolation[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 350-358. doi: 10.11993/j.issn.2096-3920.2024-0164
Citation: HU Jiantao, LI Tianjiao, LIU Hui, LI Shuxin, CHENG Xu. Prediction of Lightweight AIS-Based Ship Trajectories with Spline Interpolation[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 350-358. doi: 10.11993/j.issn.2096-3920.2024-0164

Prediction of Lightweight AIS-Based Ship Trajectories with Spline Interpolation

doi: 10.11993/j.issn.2096-3920.2024-0164
  • Received Date: 2024-12-11
  • Accepted Date: 2025-02-12
  • Rev Recd Date: 2025-01-24
  • Available Online: 2025-03-18
  • Automatic identification system(AIS) of ships provides a large amount of real-time ship navigation data, which has become an indispensable key data source in many fields such as maritime traffic management, search and rescue operations, and risk assessment. Among them, ship trajectory prediction has received wide attention. However, realizing accurate long-time trajectory prediction faces two major problems: One is the integrity of AIS data itself, and the other is the efficiency of prediction models. Therefore, how to effectively deal with the missing AIS data and how to construct a lightweight and efficient prediction model have become the key problems to be solved. In this paper, a lightweight AIS-based ship trajectory prediction method with spline interpolation was proposed. Spline interpolation was used to fill in the missing AIS data, and a lightweight linear layer structure was introduced to reduce the complexity of the deep learning model. The experimental results show that the method can effectively interpolate the missing AIS data, significantly reduce the number of parameters and computation of the deep learning model, and then improve the prediction accuracy of ship trajectories.

     

  • loading
  • [1]
    田延飞, 乔慧, 滑林, 等. 海上船舶碰撞贝叶斯网络模型及其应用[J]. 海军工程大学学报, 2023, 35(6): 28-33. doi: 10.7495/j.issn.1009-3486.2023.06.006

    TIAN Y F, QIAO H, HUA L, et al. Bayesian network model for ship collisions at sea and its applications[J]. Journal of Naval University of Engineering, 2023, 35(6): 28-33. doi: 10.7495/j.issn.1009-3486.2023.06.006
    [2]
    LIANG M H, SU J L, LIU R W, et al. AISClean: AIS data-driven vessel trajectory reconstruction under uncertain conditions[J]. Ocean Engineering, 2024, 306: 117987. doi: 10.1016/j.oceaneng.2024.117987
    [3]
    张莉莉. 舰船交通管理系统信息融合系统中的云计算应用[J]. 舰船科学技术, 2018, 40(4): 43-45. doi: 10.3404/j.issn.1672-7649.2018.04.009

    ZHANG L L. The application of cloud computing system information fusion ship traffic management system[J]. Ship Science and Technology, 2018, 40(4): 43-45. doi: 10.3404/j.issn.1672-7649.2018.04.009
    [4]
    ZHANG X Y, WANG C B, JIANG L L, et al. Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey[J]. Ocean Engineering, 2021, 235(1): 109380.
    [5]
    VARLAMIS I, TSERPES K, SARDIANOS C. Detecting search and rescue missions from AIS data[C]//2018 IEEE 34th International Conference on Data Engineering Workshops(ICDEW). San Francisco, California, USA: IEEE, 2018: 60-65.
    [6]
    DANG X K, TRUONG H N, DO V D. A path planning control for a vessel dynamic positioning system based on robust adaptive fuzzy strategy[J]. Automatika, 2022, 63(3): 580-592. doi: 10.1080/00051144.2022.2056289
    [7]
    FORTI N, MILLEFIORI L M, BRACA P, et al. Prediction of vessel trajectories from AIS data via sequence-to-sequence recurrent neural networks[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Barcelona, Spain: IEEE, 2020: 8936-8940.
    [8]
    GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1243-1252.
    [9]
    CAPOBIANCO S, MILLEFIORI L M, FORTI N, et al. Deep learning methods for vessel trajectory prediction based on recurrent neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4329-4346. doi: 10.1109/TAES.2021.3096873
    [10]
    NGUYEN D, FABLET R. A transformer network with sparse augmented data representation and cross entropy loss for AIS-based vessel trajectory prediction[J]. IEEE Access, 2024, 12: 21596-21609. doi: 10.1109/ACCESS.2024.3349957
    [11]
    刘博翀, 蔡怀宇, 杨诗远, 等. 一种用于自动驾驶场景的轻量级语义分割网络[J]. 西安电子科技大学学报, 2023, 50(1): 118-128.

    LIU B C, CAI H Y, YANG S Y, et al. Lightweight semantic segmentation network for autonomous driving scenarios[J]. Journal of Xidian University, 2023, 50(1): 118-128.
    [12]
    何戚天, 李为相, 程明, 等. 面向航拍图像的轻量化目标检测算法[J]. 电光与控制, 2025, 32(3): 56-61, 81.

    HE Q T, LI W X, CHENG M, et al. Lightweight target detection algorithm for aerial images[J]. Electronics Optics & Control, 2025, 32(3): 56-61, 81.
    [13]
    WANG W, CHEN Y, LIN M. MFLD: Lightweight object detection with multi-receptive field and long-range dependency in remote sensing images[J]. International Journal of Intelligent Computing and Cybernetics, 2024, 17(4): 805-823. doi: 10.1108/IJICC-01-2024-0020
    [14]
    汪玉秀, 苏战波. 基于轻量化神经网络的多语音识别方法研究[J]. 自动化与仪器仪表, 2023(10): 167-169, 174.

    WANG Y X, SU Z B. Research on multi-speech recognition method based on lightweight network[J]. Automation and Instrumentation, 2023(10): 167-169, 174.
    [15]
    周子垚, 刘庆玲, 陶剑英, 等. 智能6G: 网络的边缘部署和轻量化[J]. 移动通信, 2023, 47(2): 2-7.

    ZHOU Z Y, LIU Q L, TAO J Y, et al. Smart 6G: Edge deployment and lightweight networks[J]. Mobile Communications, 2023, 47(2): 2-7.
    [16]
    YAN R, MO H, YANG D, et al. Development of denoising and compression algorithms for AIS-based vessel trajectories[J]. Ocean Engineering, 2022, 252: 111207. doi: 10.1016/j.oceaneng.2022.111207
    [17]
    贺健平, 林永君, 孙孟超, 等. 考虑数据缺失的短期光伏功率预测模型[J]. 电力科学与工程, 2024, 40(11): 35-44. doi: 10.3969/j.ISSN.1672-0792.2024.11.004

    HE J P, LIN Y J, SUN M C, et al. Short-term photovoltaic power prediction model considering data missing[J]. Electric Power Science and Engineering, 2024, 40(11): 35-44. doi: 10.3969/j.ISSN.1672-0792.2024.11.004
    [18]
    LIU C, CHEN X. Vessel track recovery with incomplete AIS data using tensor CANDECOM/PARAFAC decomposition[J]. The Journal of Navigation, 2014, 67(1): 83-99. doi: 10.1017/S0373463313000398
    [19]
    GUO S, MOU J, CHEN L, et al. Improved kinematic interpolation for AIS trajectory reconstruction[J]. Ocean Engineering, 2021, 234: 109256. doi: 10.1016/j.oceaneng.2021.109256
    [20]
    KONTOPOULOS I, VARLAMIS I, TSERPES K. A distributed framework for extracting maritime traffic patterns[J]. International Journal of Geographical Information Science, 2021, 35(4): 767-792. doi: 10.1080/13658816.2020.1792914
    [21]
    ZHANG D, LI J, WU Q, et al. Enhance the AIS data availability by screening and interpolation[C]//2017 4th International Conference on Transportation Information and Safety(ICTIS). Wuhan, China: IEEE, 2017: 981-986.
    [22]
    LIU Y, FU R, PENG X, et al. AIS trajectory classification via improved IMM approach[C]//2024 43rd Chinese Control Conference(CCC). Kunming, China: IEEE, 2024: 3441-3445.
    [23]
    ANDREW G, MENGLONG Z. Efficient convolutional neural networks for mobile vision applications[J]. MobileNets, 2017, 10: 151.
    [24]
    LI C, SHI C J. Constrained optimization based low-rank approximation of deep neural networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 732-747.
    [25]
    SWAMINATHAN S, GARG D, KANNAN R, et al. Sparse low rank factorization for deep neural network compression[J]. Neurocomputing, 2020, 398(7): 185-196.
    [26]
    MCKINLEY S, LEVINE M. Cubic spline interpolation[J]. College of the Redwoods, 1998, 45(1): 1049-1060.
    [27]
    张颖, 杨廷尧. 基于样条插值的水沙通量时间序列预测算法[J]. 现代信息科技, 2024, 8(20): 145-148.

    ZHANG Y, YANG T Y. Time series prediction algorithm of water and sediment flux based on spline interpolation[J]. Modern Information Technology, 2024, 8(20): 145-148.
    [28]
    LIU H, JIA C, SHI F, et al. Staircase cascaded fusion of lightweight local pattern recognition and long-range dependencies for structural crack segmentation[J]. Automation in Construction. 2024, 154: 104459.
    [29]
    CHOPDE N R, NICHAT M. Landmark based shortest path detection by using A* and haversine formula[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2013, 1(2): 298-302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article Views(336) PDF Downloads(50) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return