
| Citation: | HU Jiantao, LI Tianjiao, LIU Hui, LI Shuxin, CHENG Xu. Prediction of Lightweight AIS-Based Ship Trajectories with Spline Interpolation[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 350-358. doi: 10.11993/j.issn.2096-3920.2024-0164 |
| [1] |
田延飞, 乔慧, 滑林, 等. 海上船舶碰撞贝叶斯网络模型及其应用[J]. 海军工程大学学报, 2023, 35(6): 28-33. doi: 10.7495/j.issn.1009-3486.2023.06.006
TIAN Y F, QIAO H, HUA L, et al. Bayesian network model for ship collisions at sea and its applications[J]. Journal of Naval University of Engineering, 2023, 35(6): 28-33. doi: 10.7495/j.issn.1009-3486.2023.06.006
|
| [2] |
LIANG M H, SU J L, LIU R W, et al. AISClean: AIS data-driven vessel trajectory reconstruction under uncertain conditions[J]. Ocean Engineering, 2024, 306: 117987. doi: 10.1016/j.oceaneng.2024.117987
|
| [3] |
张莉莉. 舰船交通管理系统信息融合系统中的云计算应用[J]. 舰船科学技术, 2018, 40(4): 43-45. doi: 10.3404/j.issn.1672-7649.2018.04.009
ZHANG L L. The application of cloud computing system information fusion ship traffic management system[J]. Ship Science and Technology, 2018, 40(4): 43-45. doi: 10.3404/j.issn.1672-7649.2018.04.009
|
| [4] |
ZHANG X Y, WANG C B, JIANG L L, et al. Collision-avoidance navigation systems for maritime autonomous surface ships: A state of the art survey[J]. Ocean Engineering, 2021, 235(1): 109380.
|
| [5] |
VARLAMIS I, TSERPES K, SARDIANOS C. Detecting search and rescue missions from AIS data[C]//2018 IEEE 34th International Conference on Data Engineering Workshops(ICDEW). San Francisco, California, USA: IEEE, 2018: 60-65.
|
| [6] |
DANG X K, TRUONG H N, DO V D. A path planning control for a vessel dynamic positioning system based on robust adaptive fuzzy strategy[J]. Automatika, 2022, 63(3): 580-592. doi: 10.1080/00051144.2022.2056289
|
| [7] |
FORTI N, MILLEFIORI L M, BRACA P, et al. Prediction of vessel trajectories from AIS data via sequence-to-sequence recurrent neural networks[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Barcelona, Spain: IEEE, 2020: 8936-8940.
|
| [8] |
GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1243-1252.
|
| [9] |
CAPOBIANCO S, MILLEFIORI L M, FORTI N, et al. Deep learning methods for vessel trajectory prediction based on recurrent neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4329-4346. doi: 10.1109/TAES.2021.3096873
|
| [10] |
NGUYEN D, FABLET R. A transformer network with sparse augmented data representation and cross entropy loss for AIS-based vessel trajectory prediction[J]. IEEE Access, 2024, 12: 21596-21609. doi: 10.1109/ACCESS.2024.3349957
|
| [11] |
刘博翀, 蔡怀宇, 杨诗远, 等. 一种用于自动驾驶场景的轻量级语义分割网络[J]. 西安电子科技大学学报, 2023, 50(1): 118-128.
LIU B C, CAI H Y, YANG S Y, et al. Lightweight semantic segmentation network for autonomous driving scenarios[J]. Journal of Xidian University, 2023, 50(1): 118-128.
|
| [12] |
何戚天, 李为相, 程明, 等. 面向航拍图像的轻量化目标检测算法[J]. 电光与控制, 2025, 32(3): 56-61, 81.
HE Q T, LI W X, CHENG M, et al. Lightweight target detection algorithm for aerial images[J]. Electronics Optics & Control, 2025, 32(3): 56-61, 81.
|
| [13] |
WANG W, CHEN Y, LIN M. MFLD: Lightweight object detection with multi-receptive field and long-range dependency in remote sensing images[J]. International Journal of Intelligent Computing and Cybernetics, 2024, 17(4): 805-823. doi: 10.1108/IJICC-01-2024-0020
|
| [14] |
汪玉秀, 苏战波. 基于轻量化神经网络的多语音识别方法研究[J]. 自动化与仪器仪表, 2023(10): 167-169, 174.
WANG Y X, SU Z B. Research on multi-speech recognition method based on lightweight network[J]. Automation and Instrumentation, 2023(10): 167-169, 174.
|
| [15] |
周子垚, 刘庆玲, 陶剑英, 等. 智能6G: 网络的边缘部署和轻量化[J]. 移动通信, 2023, 47(2): 2-7.
ZHOU Z Y, LIU Q L, TAO J Y, et al. Smart 6G: Edge deployment and lightweight networks[J]. Mobile Communications, 2023, 47(2): 2-7.
|
| [16] |
YAN R, MO H, YANG D, et al. Development of denoising and compression algorithms for AIS-based vessel trajectories[J]. Ocean Engineering, 2022, 252: 111207. doi: 10.1016/j.oceaneng.2022.111207
|
| [17] |
贺健平, 林永君, 孙孟超, 等. 考虑数据缺失的短期光伏功率预测模型[J]. 电力科学与工程, 2024, 40(11): 35-44. doi: 10.3969/j.ISSN.1672-0792.2024.11.004
HE J P, LIN Y J, SUN M C, et al. Short-term photovoltaic power prediction model considering data missing[J]. Electric Power Science and Engineering, 2024, 40(11): 35-44. doi: 10.3969/j.ISSN.1672-0792.2024.11.004
|
| [18] |
LIU C, CHEN X. Vessel track recovery with incomplete AIS data using tensor CANDECOM/PARAFAC decomposition[J]. The Journal of Navigation, 2014, 67(1): 83-99. doi: 10.1017/S0373463313000398
|
| [19] |
GUO S, MOU J, CHEN L, et al. Improved kinematic interpolation for AIS trajectory reconstruction[J]. Ocean Engineering, 2021, 234: 109256. doi: 10.1016/j.oceaneng.2021.109256
|
| [20] |
KONTOPOULOS I, VARLAMIS I, TSERPES K. A distributed framework for extracting maritime traffic patterns[J]. International Journal of Geographical Information Science, 2021, 35(4): 767-792. doi: 10.1080/13658816.2020.1792914
|
| [21] |
ZHANG D, LI J, WU Q, et al. Enhance the AIS data availability by screening and interpolation[C]//2017 4th International Conference on Transportation Information and Safety(ICTIS). Wuhan, China: IEEE, 2017: 981-986.
|
| [22] |
LIU Y, FU R, PENG X, et al. AIS trajectory classification via improved IMM approach[C]//2024 43rd Chinese Control Conference(CCC). Kunming, China: IEEE, 2024: 3441-3445.
|
| [23] |
ANDREW G, MENGLONG Z. Efficient convolutional neural networks for mobile vision applications[J]. MobileNets, 2017, 10: 151.
|
| [24] |
LI C, SHI C J. Constrained optimization based low-rank approximation of deep neural networks[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 732-747.
|
| [25] |
SWAMINATHAN S, GARG D, KANNAN R, et al. Sparse low rank factorization for deep neural network compression[J]. Neurocomputing, 2020, 398(7): 185-196.
|
| [26] |
MCKINLEY S, LEVINE M. Cubic spline interpolation[J]. College of the Redwoods, 1998, 45(1): 1049-1060.
|
| [27] |
张颖, 杨廷尧. 基于样条插值的水沙通量时间序列预测算法[J]. 现代信息科技, 2024, 8(20): 145-148.
ZHANG Y, YANG T Y. Time series prediction algorithm of water and sediment flux based on spline interpolation[J]. Modern Information Technology, 2024, 8(20): 145-148.
|
| [28] |
LIU H, JIA C, SHI F, et al. Staircase cascaded fusion of lightweight local pattern recognition and long-range dependencies for structural crack segmentation[J]. Automation in Construction. 2024, 154: 104459.
|
| [29] |
CHOPDE N R, NICHAT M. Landmark based shortest path detection by using A* and haversine formula[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2013, 1(2): 298-302.
|