• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 33 Issue 2
May  2025
Turn off MathJax
Article Contents
DENG Ke, WANG Shuaijun, YU Hua, ZHANG Jian, CHEN Junfan, WU Zhouping. Underwater Acoustic Rapidly Time-Varying Channel Equalization Technique Integrating Deep Learning and Domain Knowledge[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 299-306. doi: 10.11993/j.issn.2096-3920.2024-0163
Citation: DENG Ke, WANG Shuaijun, YU Hua, ZHANG Jian, CHEN Junfan, WU Zhouping. Underwater Acoustic Rapidly Time-Varying Channel Equalization Technique Integrating Deep Learning and Domain Knowledge[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 299-306. doi: 10.11993/j.issn.2096-3920.2024-0163

Underwater Acoustic Rapidly Time-Varying Channel Equalization Technique Integrating Deep Learning and Domain Knowledge

doi: 10.11993/j.issn.2096-3920.2024-0163
  • Received Date: 2024-12-11
  • Accepted Date: 2025-02-17
  • Rev Recd Date: 2025-02-06
  • Available Online: 2025-03-10
  • Multicarrier communication schemes, such as orthogonal frequency division multiplexing(OFDM), are the mainstream solutions for achieving high spectral efficiency in underwater acoustic transmissions. These schemes effectively address frequency-selective fading caused by multipath acoustic propagation in underwater environments. However, in rapidly time-varying scenarios, inter-carrier interference(ICI) can severely compromise transmission reliability. To mitigate the time-frequency doubly-selective fading in such underwater acoustic rapidly time-varying channels and reduce the bit error rate(BER) of OFDM systems, this paper proposed an underwater acoustic rapidly time-varying channel equalization method that combined deep learning with domain knowledge. Different from regarding the outcomes of traditional channel estimation and equalization detection as preprocessing results or supplementary information sources for deep neural networks(DNNs), this paper employed the structured information from classical frequency-domain equalization models to assist in the training and inference of DNN models, so as to counteract the adverse effects of ICI and adapt to scenarios where there is a mismatch between the actual deployment channel environment and the training channel environment. Numerical simulation and sea trial results confirm that the proposed approach can effectively reduce the BER of receivers and achieve faster model convergence, and the potential to achieve stronger generalization performance under unknown channel conditions.

     

  • loading
  • [1]
    LI B, ZHOU S, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198-209. doi: 10.1109/JOE.2008.920471
    [2]
    BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708-21. doi: 10.1109/TSP.2009.2038424
    [3]
    YU H, SONG A, BADIEY M, et al. Iterative estimation of doubly selective underwater acoustic channel using basis expansion models[J]. Ad Hoc Networks, 2015, 34(11): 52-61.
    [4]
    WANG S, LIU M, LI D. Bayesian learning-based clustered-sparse channel estimation for time-varying underwater acoustic OFDM communication[J]. Sensors, 2021, 21(14): 4889. doi: 10.3390/s21144889
    [5]
    KANNU A P, SCHNITER P. Design and analysis of MMSE pilot-aided cyclic-prefixed block transmissions for doubly selective channels[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1148-1160. doi: 10.1109/TSP.2007.908969
    [6]
    KALTENBERGER F, ZEMEN T, UEBERHUBER C W. Low-complexity doubly selective channel simulation using multidimensional discrete prolate spheroidal sequences[EB/OL]. [2024-12-13]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=764a2987979e1c69ff36f33bdf818c3763d4d5dc.
    [7]
    NEUMANN D, WIESE T, UTSCHICK W. Learning the MMSE channel estimator[J]. IEEE Transactions on Signal Processing, 2018, 66(11): 2905-2917. doi: 10.1109/TSP.2018.2799164
    [8]
    YE H, LI G Y, JUANG B H F. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communication Letters, 2017, 16(99): 114-117.
    [9]
    JIANG R, WANG X, CAO S, et al. Deep neural networks for channel estimation in underwater acoustic OFDM systems[J]. IEEE Access, 2019, 7(7): 23579-94.
    [10]
    ZHANG Y, LI J, ZAKHAROV Y, et al. Deep learning based underwater acoustic OFDM communications[J]. Applied Acoustics, 2019, 154(11): 53-58.
    [11]
    赵昊. 基于深度学习的水声通信物理层技术研究[D]. 广州: 华南理工大学, 2023.
    [12]
    张永霖, 王海斌, 李超, 等. 水声通信中的信道估计与机器学习交叉研究进展[J]. 声学技术, 2022, 41(3): 334-345. doi: 10.3969/j.issn.1000-3630.2022.3.sxjs202203005

    ZHANG Y L, WANG H B, LI C, et al. Advances in the intersection of channel estimation and machine learning in underwater acoustic communications[J]. Technical Acoustics, 2022, 41(3): 334-345. doi: 10.3969/j.issn.1000-3630.2022.3.sxjs202203005
    [13]
    CHEN Y, QIAO P, REN X, et al. OFDM underwater acoustic communication receiver based on deep learning [C]//Oceans. Singapore: IEEE, 2024.
    [14]
    SHLEZINGER N, WHANG J, ELDAR Y C, et al. Model-based deep learning: Key approaches and design guidelines[C]//IEEE Data Science and Learning Workshop(DSLW). Toronto, Canada: IEEE, 2021.
    [15]
    XU Z B, SUN J. Model-driven deep-learning[J]. National Science Review, 2018, 5(1): 22-24. doi: 10.1093/nsr/nwx099
    [16]
    LIN X, SHEN Y, JIANG C. A Model-driven deep learning-based receiver for OFDM system with carrier frequency offset[J]. IEEE Communications Letters, 2024, 28(4): 813-817. doi: 10.1109/LCOMM.2024.3354990
    [17]
    FENG X, ZHOU M, WANG J, et al. Model-driven deep learning-based estimation for underwater acoustic channels with uncertain sparsity[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 5710-25. doi: 10.1109/TWC.2023.3327995
    [18]
    GAO X, JIN S, WEN C K, et al. ComNet: Combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018, 22(12): 2627-30. doi: 10.1109/LCOMM.2018.2877965
    [19]
    RU X, WEI L, XU Y. Model-driven channel estimation for OFDM systems based on image super-resolution network[C]//2020 IEEE 5th International Conference on Signal and Image Processing(ICSIP). Nanjing, China: IEEE, 2020.
    [20]
    ZHAO H, JI F, WEN M, et al. Multi-task learning based underwater acoustic OFDM communications[C]//2021 IEEE International Conference on Signal Processing, Communications and Computing. Xi’an, China: IEEE, 2021.
    [21]
    MUQUET B, WANG Z, GIANNAKIS G B, et al. Cyclic prefixing or zero padding for wireless multicarrier transmissions?[J]. IEEE Transactions on Communications, 2002, 50(12): 2136-48. doi: 10.1109/TCOMM.2002.806518
    [22]
    GOLUB G H , VAN LOAN C F. Matrix Computations [M]. 4th ed. Baltimore, MD: Johns Hopkins University Press, 2013.
    [23]
    HLAWATSCH F, MATZ G. Wireless communications over rapidly time-varying channels[M]. New York: Academic Press, 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article Views(345) PDF Downloads(34) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return