
| Citation: | DENG Ke, WANG Shuaijun, YU Hua, ZHANG Jian, CHEN Junfan, WU Zhouping. Underwater Acoustic Rapidly Time-Varying Channel Equalization Technique Integrating Deep Learning and Domain Knowledge[J]. Journal of Unmanned Undersea Systems, 2025, 33(2): 299-306. doi: 10.11993/j.issn.2096-3920.2024-0163 |
| [1] |
LI B, ZHOU S, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198-209. doi: 10.1109/JOE.2008.920471
|
| [2] |
BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1708-21. doi: 10.1109/TSP.2009.2038424
|
| [3] |
YU H, SONG A, BADIEY M, et al. Iterative estimation of doubly selective underwater acoustic channel using basis expansion models[J]. Ad Hoc Networks, 2015, 34(11): 52-61.
|
| [4] |
WANG S, LIU M, LI D. Bayesian learning-based clustered-sparse channel estimation for time-varying underwater acoustic OFDM communication[J]. Sensors, 2021, 21(14): 4889. doi: 10.3390/s21144889
|
| [5] |
KANNU A P, SCHNITER P. Design and analysis of MMSE pilot-aided cyclic-prefixed block transmissions for doubly selective channels[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1148-1160. doi: 10.1109/TSP.2007.908969
|
| [6] |
KALTENBERGER F, ZEMEN T, UEBERHUBER C W. Low-complexity doubly selective channel simulation using multidimensional discrete prolate spheroidal sequences[EB/OL]. [2024-12-13]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=764a2987979e1c69ff36f33bdf818c3763d4d5dc.
|
| [7] |
NEUMANN D, WIESE T, UTSCHICK W. Learning the MMSE channel estimator[J]. IEEE Transactions on Signal Processing, 2018, 66(11): 2905-2917. doi: 10.1109/TSP.2018.2799164
|
| [8] |
YE H, LI G Y, JUANG B H F. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communication Letters, 2017, 16(99): 114-117.
|
| [9] |
JIANG R, WANG X, CAO S, et al. Deep neural networks for channel estimation in underwater acoustic OFDM systems[J]. IEEE Access, 2019, 7(7): 23579-94.
|
| [10] |
ZHANG Y, LI J, ZAKHAROV Y, et al. Deep learning based underwater acoustic OFDM communications[J]. Applied Acoustics, 2019, 154(11): 53-58.
|
| [11] |
赵昊. 基于深度学习的水声通信物理层技术研究[D]. 广州: 华南理工大学, 2023.
|
| [12] |
张永霖, 王海斌, 李超, 等. 水声通信中的信道估计与机器学习交叉研究进展[J]. 声学技术, 2022, 41(3): 334-345. doi: 10.3969/j.issn.1000-3630.2022.3.sxjs202203005
ZHANG Y L, WANG H B, LI C, et al. Advances in the intersection of channel estimation and machine learning in underwater acoustic communications[J]. Technical Acoustics, 2022, 41(3): 334-345. doi: 10.3969/j.issn.1000-3630.2022.3.sxjs202203005
|
| [13] |
CHEN Y, QIAO P, REN X, et al. OFDM underwater acoustic communication receiver based on deep learning [C]//Oceans. Singapore: IEEE, 2024.
|
| [14] |
SHLEZINGER N, WHANG J, ELDAR Y C, et al. Model-based deep learning: Key approaches and design guidelines[C]//IEEE Data Science and Learning Workshop(DSLW). Toronto, Canada: IEEE, 2021.
|
| [15] |
XU Z B, SUN J. Model-driven deep-learning[J]. National Science Review, 2018, 5(1): 22-24. doi: 10.1093/nsr/nwx099
|
| [16] |
LIN X, SHEN Y, JIANG C. A Model-driven deep learning-based receiver for OFDM system with carrier frequency offset[J]. IEEE Communications Letters, 2024, 28(4): 813-817. doi: 10.1109/LCOMM.2024.3354990
|
| [17] |
FENG X, ZHOU M, WANG J, et al. Model-driven deep learning-based estimation for underwater acoustic channels with uncertain sparsity[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 5710-25. doi: 10.1109/TWC.2023.3327995
|
| [18] |
GAO X, JIN S, WEN C K, et al. ComNet: Combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018, 22(12): 2627-30. doi: 10.1109/LCOMM.2018.2877965
|
| [19] |
RU X, WEI L, XU Y. Model-driven channel estimation for OFDM systems based on image super-resolution network[C]//2020 IEEE 5th International Conference on Signal and Image Processing(ICSIP). Nanjing, China: IEEE, 2020.
|
| [20] |
ZHAO H, JI F, WEN M, et al. Multi-task learning based underwater acoustic OFDM communications[C]//2021 IEEE International Conference on Signal Processing, Communications and Computing. Xi’an, China: IEEE, 2021.
|
| [21] |
MUQUET B, WANG Z, GIANNAKIS G B, et al. Cyclic prefixing or zero padding for wireless multicarrier transmissions?[J]. IEEE Transactions on Communications, 2002, 50(12): 2136-48. doi: 10.1109/TCOMM.2002.806518
|
| [22] |
GOLUB G H , VAN LOAN C F. Matrix Computations [M]. 4th ed. Baltimore, MD: Johns Hopkins University Press, 2013.
|
| [23] |
HLAWATSCH F, MATZ G. Wireless communications over rapidly time-varying channels[M]. New York: Academic Press, 2011.
|