• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
CHEN Weixin, LIU Tao, ZHANG Tao, LIU Feng. Application of state estimation algorithm for UUV docking[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0161
Citation: CHEN Weixin, LIU Tao, ZHANG Tao, LIU Feng. Application of state estimation algorithm for UUV docking[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0161

Application of state estimation algorithm for UUV docking

doi: 10.11993/j.issn.2096-3920.2024-0161
  • Received Date: 2024-11-22
  • Accepted Date: 2025-03-04
  • Rev Recd Date: 2025-02-26
  • Available Online: 2025-06-26
  • Underwater autonomous dynamic docking of unmanned undersea vehicle (UUV) is one of the key technologies for achieving long-range cooperative of UUV. Aiming at the problem of insufficient estimation of the motion state of the docking device in docking, an interacting multi-model adaptive unscented Kalman filter method is proposed to estimate the docking device motion state. Considering that the measurement error of the motion state of the docking device obtained by the UUV sensor is large, the UUV nonlinear observation model is established, and the adaptive unscented Kalman filter (AUKF) algorithm is used to update the observation noise model in real time to reduce the observation error. Considering that the difficulty of the describing the relative motion of UUV and docking device with a single model, the motion state model set of the docking device is established, and the interactive multi-model algorithm is used to describe the motion state of the docking device to improve the filtering accuracy and realize the accurate estimation of the motion state of the docking device by UUV in underwater docking. Based on UUV docking test data, the estimation results of unscented Kalman filter, adaptive unscented Kalman filter and interacting multi-model adaptive unscented Kalman filter are compared. The results show that the accuracy and stability of interacting multi-model adaptive unscented Kalman filter are better than the other two algorithms. It can be applied to underwater autonomous docking scenarios with UUV to improve the success rate.

     

  • loading
  • [1]
    侯海平, 付春龙, 赵楠, 等. 智能自主式水下航行器技术发展研究[J]. 舰船科学技术, 2022, 44(1): 86-90. doi: 10.3404/j.issn.1672-7649.2022.01.017

    HOU H P, FU C L, ZHAO N, et al. Research on technology development of the intelligent AUV[J]. Ship Science and Technology, 2022, 44(1): 86-90. doi: 10.3404/j.issn.1672-7649.2022.01.017
    [2]
    严恭敏, 邓瑀. 传统组合导航中的实用Kalman滤波技术评述[J]. 导航定位与授时, 2020, 7(2): 50-64.

    YAN G M, DENG Y. Review on Practical Kalman Filtering Techniques in Traditional Integrated Navigation System[J]. Navigation Positioning & Timing, 2020, 7(2): 50-64.
    [3]
    王银涛, 贾晓宝, 崔荣鑫, 等. 移动USBL测距辅助的UUV协同导航定位方法[J]. 控制理论与应用, 2022, 39(11): 2057-2064. doi: 10.7641/CTA.2022.11172

    WANG Y T, JIA X B, CUI R X, et al. Cooperative UUV navigation and positioning assisted by mobile USBL distance measurement[J]. Control Theory & Applications, 2022, 39(11): 2057-2064. doi: 10.7641/CTA.2022.11172
    [4]
    李杨, 杜度, 范世伟等. 基于M估计的多UUV协同定位算法[J]. 舰船科学技术, 2020, 42(7): 123-126. doi: 10.3404/j.issn.1672-7649.2020.04.024

    LI Y, DU D, FAN S W, et al. Multiple-UUVs’ cooperative location algorithm based on M-estimation[J]. Ship Science and Technology, 2020, 42(7): 123-126. doi: 10.3404/j.issn.1672-7649.2020.04.024
    [5]
    BAO L H, ZENG Q J, ZHU Z Y, et al. AUV Docking Recovery Based on USBL Integrated Navigation Method [C]//2019 Chinese Automation Congress(CAC), Hangzhou, China: CAC, 2019: 5804-5809.
    [6]
    LAN J, LI X R, MU C D. Best Model Augmentation for Variable-Structure Multiple-Model Estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2008-2025. doi: 10.1109/TAES.2011.5937279
    [7]
    陈维义, 何凡, 刘国强, 等. 变结构交互式多模型滤波和平滑算法[J]. 系统工程与电子技术, 2023, 45(12): 4005-4012.

    Chen W Y, HE F, LIU G Q, et al. Variable structure interactive multiple model filtering and smoothing algorithm[J]. Systems Engineering and Electronics, 2023, 45(12): 4005-4012.
    [8]
    许林漪. 基于多模型协作的对比学习样本构建[D]. 广州: 华南理工大学, 2023.
    [9]
    李开飞. AUV水下对接关键技术及对接碰撞问题研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
    [10]
    郑荣, 吕厚权, 于闯等. AUV与自主移动坞站对接的技术研究及系统设计实现[J]. 机器人, 2019, 41(6): 713-721.

    ZHENG R, LÜ H Q, YU C, et al. Technical Research, System Design and Implementation of Docking between AUV and Autonomous Mobile Dock Station[J]. ROBOT, 2019, 41(6): 713-721.
    [11]
    李曾妮. 移动对接过程中的欠驱动AUV路径规划方法研究[D]. 杭州: 浙江大学, 2022.
    [12]
    焦文龙. 欠驱动AUV机动目标跟踪控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
    [13]
    Chen, Yong et al. Vehicle State Estimation Based on Sage–Husa Adaptive Unscented Kalman Filtering[J]. World Electr, 2023, 14(7): 167-189.
    [14]
    张常云. 自适应滤波方法研究[J]. 航空学报, 1998, 19(S1): 97-100. doi: 10.3321/j.issn:1000-6893.1998.Z1.021

    ZHANG C Y. Approach to adaptive filtering algorithm[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(S1): 97-100. doi: 10.3321/j.issn:1000-6893.1998.Z1.021
    [15]
    许红, 谢文冲, 袁华东, 等. 基于自适应的增广状态-交互式多模型的机动目标跟踪算法[J]. 电子与信息学报, 2020, 42(11): 2749-2755. doi: 10.11999/JEIT190516

    XU H, XIE W C, YUAN H D, et al. Maneuvering Target Tracking Algorithm Based on the Adaptive Augmented State Interracting Multiple Model[J]. Journal of Electronics & Information Technology, 2020, 42(11): 2749-2755. doi: 10.11999/JEIT190516
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article Views(24) PDF Downloads(2) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return