• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 4
Aug  2025
Turn off MathJax
Article Contents
CHEN Shagu, GAO Yuan, WU Zhirui, WANG Kun, ZHOU Cheng. Test Method for Complex Surface-Underwater Conditions of Deep-Sea Special Pressure Structure[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 691-698. doi: 10.11993/j.issn.2096-3920.2024-0153
Citation: CHEN Shagu, GAO Yuan, WU Zhirui, WANG Kun, ZHOU Cheng. Test Method for Complex Surface-Underwater Conditions of Deep-Sea Special Pressure Structure[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 691-698. doi: 10.11993/j.issn.2096-3920.2024-0153

Test Method for Complex Surface-Underwater Conditions of Deep-Sea Special Pressure Structure

doi: 10.11993/j.issn.2096-3920.2024-0153
  • Received Date: 2024-11-08
  • Accepted Date: 2025-02-08
  • Rev Recd Date: 2025-01-01
  • Available Online: 2025-03-11
  • The separable head cover is a special pressure structure used in deep-sea unmanned systems that must balance long-term underwater pressure resistance with rapid separation when on the water surface. In order to study the overall performance of a deep-sea special pressure structure under complex surface-underwater conditions, a full-scale structural model of the separable head cover was developed for pressure and separation testing. Firstly, in response to the testing requirements for long-term seawater pressure environments during underwater operation, this study, based on the existing Chinese deep-sea environment simulation systems, proposed a test method that simulated coupled deep seawater-pressure conditions using a cabin device with skin balloons. Furthermore, in response to the testing requirements for rapid separation of the separable head cover after surfacing(in air), a safe and reliable inclined flange connection structure model rapid separation testing system was established. The test results of the full-scale model of the separable head cover show that the proposed testing method for complex surface–underwater conditions of a special pressure structure is reasonable and feasible. It can not only be used for pressure and separation testing of the separable head cover but also provide reference for the design and testing of similar pressure structures in other deep-sea equipment.

     

  • loading
  • [1]
    ZHANG E, ZHU X L, JING T, et al. Research status and development trend of pressure resistant structure of deep submersibles[J]. Journal of Ship Mechanics, 2021, 25(10): 1427-1437.
    [2]
    石学法, 符亚洲, 李兵. 我国深海矿产研究: 进展与发现(2011—2020年)[J]. 矿物岩石地球化学通报, 2021, 40(22): 1-14.

    SHI X F, FU Y Z, LI B. Research on deep-sea minerals in China: Progress and discovery(2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(22): 1-14.
    [3]
    黄牧, 石学法, 毕东杰. 深海稀土资源勘查开发研究进展[J]. 中国有色金属学报, 2021, 31(10): 2665-2681.

    HUANG M, SHI X F, BI D J. Advances on study of exploration and development of deep-sea rare earth resources[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2665-2681.
    [4]
    MUTTAQIE T, PARK S H, CHO S R, et al. Optimisation of the design of a steel-welded pressure hull structure based on interactive nonlinear collapse strength analyses[J]. Ships and Off-shore Structures, 2022, 17(1/3): 76-91.
    [5]
    WANG F, HU Y, CUI W C, et al. Preliminary evaluation of maraging steels on its application to full ocean depth manned cabin[J]. Journal of Ship Mechanics, 2016, 20(12): 1557-1572.
    [6]
    曹俊, 胡震, 刘涛. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1): 204-218. doi: 10.3969/j.issn.1000-4882.2020.01.021

    CAO J, HU Z, LIU T. Current situation and development of deep-sea submersible equipment[J]. Ship Building of China, 2020, 61(1): 204-218. doi: 10.3969/j.issn.1000-4882.2020.01.021
    [7]
    AMAZIGO J C, FRASER W B. Buckling under external pressure of cylindrical shells with dimple shaped initial imperfections[J]. International Journal of Solids & Structures, 1971, 7(8): 883-900.
    [8]
    李智生, 张强. 深海预置武器系统发展现状及关键技术[J]. 舰船电子工程, 2020, 308(2): 1-4. doi: 10.3969/j.issn.1672-9730.2020.02.001

    LI Z S, ZHANG Q. Development situation and key technologies of deep sea laying weapon[J]. Ship Electronic Engineering, 2020, 308(2): 1-4. doi: 10.3969/j.issn.1672-9730.2020.02.001
    [9]
    陈沙古, 高原, 吴智睿. 深海无人系统大长径比环肋圆柱壳结构设计与试验研究[J]. 海洋工程, 2024, 42(1): 115-123.

    CHEN S G, GAO Y, WU Z R. Study on design and experimental of ring-stiffened cylindrical shell with large length-diameter ratio for unmanned deep-sea systems[J]. The Ocean Engineering, 2024, 42(1): 115-123.
    [10]
    李文跃, 王帅, 刘涛. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210-221. doi: 10.3969/j.issn.1000-4882.2016.01.023

    LI W Y, WANG S, LIU T. Current status and progress on pressure hull structure of manned deep submersible[J]. Shipbuilding of China, 2016, 57(1): 210-221. doi: 10.3969/j.issn.1000-4882.2016.01.023
    [11]
    谢锡南, 潘森涛, 沈永新. 水下耐压结构外压疲劳试验系统研制[J]. 船舶力学, 2000, 4(2): 44-50.

    XIE X N, PAN S T, SHEN Y X. Development of experimental system for external pressure fatigue tests of underwater pressure structures[J]. Journal of Ship Mechanics, 2000, 4(2): 44-50.
    [12]
    张强, 张雷励, 张铭钧. 深海环境模拟实验装置及压力动态控制技术[J]. 哈尔滨工程大学学报, 2016, 37(11): 1565-1572. doi: 10.11990/jheu.201510044

    ZHANG Q, ZHANG L L, ZHANG M J. Experiment devices for simulating a deep-sea environment and dynamic pressure control technology[J]. Journal of Harbin Engineering University, 2016, 37(11): 1565-1572. doi: 10.11990/jheu.201510044
    [13]
    杨伟华. 深海耐压结构健康监测与在线评估技术研究[D]. 无锡: 中国船舶科学研究中心, 2018.
    [14]
    刘淮. 国外深海技术发展研究[J]. 船艇, 2006(10): 6-22.

    LIU H. Reseach on development of overseas deep ocean technologies[J]. Ships & Yachts, 2006(10): 6-22.
    [15]
    张帅, 杨敏, 吴静. 深水环境试验技术综述[J]. 装备环境工程, 2021, 18(5): 41-48.

    ZHANG S, YANG M, WU J. Review of the test technology for deep sea environment[J]. Equipment Environmental Engineering, 2021, 18(5): 41-48.
    [16]
    张海龙, 钟国睿, 朱志伟. 深海装备的静水压力试验技术[J]. 船舶与海洋工程, 2019, 35(5): 14-19.

    ZHANG H L, ZHONG G R, ZHU Z W. Hydrostatic pressure test technology for deep-sea equipment[J]. Naval Architecture and Ocean Engineering, 2019, 35(5): 14-19.
    [17]
    张倩瑜, 孙晓宁, 李昕. 高压水下应变测量方案研究[J]. 天津化工, 2013, 26(6): 33-35. doi: 10.3969/j.issn.1008-1267.2013.06.012

    ZHANG Q Y, SUN X N, LI X. Research of strain measurement with high-pressure underwater[J]. Tianjin Chemical Industry, 2013, 26(6): 33-35. doi: 10.3969/j.issn.1008-1267.2013.06.012
    [18]
    李盼菲. 电阻应变测量中提高精度的方法研究[J]. 计量与测试技术, 2019, 46(12): 62-64.

    LI P F. Research on method of improving accuracy in resistance strain measurement technique[J]. Metrology & Measurement Technique, 2019, 46(12): 62-64.
    [19]
    黄进浩, 邱昌贤, 张平平. 高压深海压力环境模拟装置耐压试验技术研究[C]//中国造船工程学会船舶力学学术委员会第八次全体会议论文集. 大连, 中国: 中国造船工程学会船舶力学学术委员会, 2014: 209-217.
    [20]
    陈沙古, 吴智睿, 高原. 基于三维应力方法的中厚壳耐压结构强度研究[J]. 船舶力学, 2024, 28(11): 1731-1741. doi: 10.3969/j.issn.1007-7294.2024.11.010

    CHEN S G, WU Z R, GAO Y. Structural strength of medium-thick shell based on three dimensional stress analysis method[J]. Journal of Ship Mechanics, 2024, 28(11): 1731-1741. doi: 10.3969/j.issn.1007-7294.2024.11.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article Views(111) PDF Downloads(16) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return