Citation: | LU Jieyang, WEN Yongpeng, GUO Qian, ZHU Xinke, JIAO Junsheng. A Data-Driven Front Tracking Algorithm for Autonomous Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 518-526. doi: 10.11993/j.issn.2096-3920.2024-0151 |
[1] |
马雨薇, 韩东, 魏尚飞. 海洋锋对潜艇水声通信与探测的影响分析[J]. 电声技术, 2021, 45(1): 22-31.
MA Y W, HAN D, WEI S F. The influence of ocean front on submarine acoustic communication and detection[J]. Audio Engineering, 2021, 45(1): 22-31.
|
[2] |
CHAPMAN C C, LEA M, MEYER A, et al. Defining southern ocean fronts and their influence on biological and physical processes in a changing climate[J]. Nature Climate Change, 2020, 10(3): 209-219. doi: 10.1038/s41558-020-0705-4
|
[3] |
SIEGELMAN L, MALCOLM O’T, FLEXAS M, et al. Submesoscale ocean fronts act as biological hotspot for southern elephant seal[J]. Scientific Reports, 2019, 9(1): 1-13. doi: 10.1038/s41598-018-37186-2
|
[4] |
张玉潇, 张宁, 曾宇阳, 等. 水下机器人测试技术及展望[J]. 科技与创新, 2024(16): 49-51.
|
[5] |
ZHANG Y, RYAN P J, BELLINGHAM G J, et al. Autonomous detection and sampling of water types and fronts in a coastal upwelling system by an autonomous underwater vehicle[J]. Limnology and Oceanography: Methods, 2012, 10(11): 934-951. doi: 10.4319/lom.2012.10.934
|
[6] |
BELKIN I, SOUSA J, JOSÉ PINTO, et al. A new front-tracking algorithm for marine robots[C]//2018 IEEE/OES Autonomous Underwater Vehicle Workshop(AUV). Porto, Portugal: IEEE, 2019: 1-3.
|
[7] |
关浩博. 数据驱动的水下机器人海洋环境自适应观测研究[D]. 沈阳: 沈阳工业大学, 2021.
|
[8] |
YAN S, LI Y, FENG X, et al. An AUV adaptive sampling path planning method based on online model prediction[C]//14th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles (CAMS 2020). Berlin, Germany: IFAC CAMS,2020, 53: 323-328.
|
[9] |
曲向宇, 李一平. 一种基于温度动态估计的AUV锋面跟踪算法[J]. 海洋技术学报, 2020, 39(4): 29-35.
QU X Y, LI Y P. An AUV front tracking algorithm based on temperature dynamic estimation[J]. Journal of Ocean Technology, 2020, 39(4): 29-35.
|
[10] |
刘隽. 模块化AUV载体结构设计与操纵性分析[D]. 南昌: 东华理工大学, 2023.
|
[11] |
张伟荣, 陈学庚, 齐江涛, 等. 基于深度学习和高斯过程回归的玉米冠下视觉导航路径提取方法[J]. 农业机械学报, 2024, 55(7): 15-26. doi: 10.6041/j.issn.1000-1298.2024.07.002
ZHANG W R, CHEN X G, QI J T, et al. Deep learning and Gaussian process regression based path extraction for visual navigation under canopy[J]. Transaction of the Chinese Society for Agricultural Machinery, 2024, 55(7): 15-26. doi: 10.6041/j.issn.1000-1298.2024.07.002
|
[12] |
MENKE W, CREEL R. Gaussian process regression reviewed in the context of inverse theory[J]. Surveys in Geophysics, 2021, 42(3): 473-503. doi: 10.1007/s10712-021-09640-w
|
[13] |
秦静, 郑德, 裴毅强, 等. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1489-1498.
QIN J, ZHENG D, PEI Y Q, et al. Prediction method of engine performance and emission based on PSO-GPR[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1489-1498.
|
[14] |
张金珂, 张建刚. 基于改进粒子群优化算法的信号检测及故障诊断[J]. 山东大学学报(理学版), 2023, 58(5): 63-75.
ZHANG J K, ZHANG J G. Signal detection and fault diagnosis based on improved particle swarm optimization algorithm[J]. Journal of Shandong University, 2023, 58(5): 63-75.
|
[15] |
ZHU M, CHEN B, GU C, et al. Optimized multi-output LSSVR displacement monitoring model for super high arch dams based on dimensionality reduction of measured dam temperature field[J]. Engineering Structures, 2022, 268: 114686. doi: 10.1016/j.engstruct.2022.114686
|