• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 3
Jun  2025
Turn off MathJax
Article Contents
LU Yanyang, CHEN Qinglang, LI Xun, WANG Zhaohong. Influence of Beam Angle of Array Sound Source on Sound Propagation in Typical Shallow Sea Environments[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 552-558. doi: 10.11993/j.issn.2096-3920.2024-0150
Citation: LU Yanyang, CHEN Qinglang, LI Xun, WANG Zhaohong. Influence of Beam Angle of Array Sound Source on Sound Propagation in Typical Shallow Sea Environments[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 552-558. doi: 10.11993/j.issn.2096-3920.2024-0150

Influence of Beam Angle of Array Sound Source on Sound Propagation in Typical Shallow Sea Environments

doi: 10.11993/j.issn.2096-3920.2024-0150
  • Received Date: 2024-11-03
  • Accepted Date: 2024-12-17
  • Rev Recd Date: 2024-11-28
  • Available Online: 2025-05-29
  • With the development of active sonar technology, the beam output capability of active sonar has become the focus of engineering research. It is necessary to study the influence of the sound beam angle on sound propagation for a typical vertical linear array sound source. Based on the theory of normal modes in acoustics, this paper derived the expression of the sound signal for an array sound source and discovered that the sound signal was mainly affected by the following two factors: the beam output of the array sound source at each modal mode and the modal amplitude sampling at the receiving depth. Simulation results show two phenomena: a clear differential distribution structure of the sound signal in the receiving depth and a deviation of the optimal beam angle from 0° as the sound source depth increases. The paper explains the mechanism of the two phenomena based on the derived sound field formula and gives design suggestions for the optimal beam angle under different sonar transmitting and receiving position relationships in typical shallow sea environments, providing a reference for the active sonar sound beam design research and providing ideas for the rational deployment of the transmitting and receiving positions.

     

  • loading
  • [1]
    SHENG X, LU J, DONG W, et al. The research on the coverage area of multistatic sonar in various working modes[C]//OCEANS 2013 MTS/IEEE. San Diego, California, USA: IEEE, 2014.
    [2]
    ZHAO K, LIANG J, KARLSSON J, et al. Enhanced multistatic active sonar signal processing[C]//IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP 2013). Vancouver, British Columbia, Canada: IEEE, 2013: 300-311.
    [3]
    JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational ocean acoustics[M]. New York: Springer, 2011.
    [4]
    CABLE P G. A method to predict active sonar detection range in uncertain shallow water environments[J]. Journal of the Acoustical Society of America, 2006, 119(5): 3426.
    [5]
    YANG K, LU Y, LEI Z, et al. Passive localization based on multipath time-delay difference with two hydrophones in deep ocean[J]. Acoustics Australia, 2017, 45(1): 15-17.
    [6]
    DUAN R, YANG K D, MA Y L, et al. A reliable acoustic path: Physical properties and a source localization method[J]. Chinese Physics B, 2012, 21(12): 276-289.
    [7]
    URICK R J. Caustics and convergence zones in deep-water sound transmission[J]. Journal of the Acoustical Society of America, 1965, 37(6): 1191.
    [8]
    HALE F E. Long-range sound propagation in the deep ocean[J]. Journal of the Acoustical Society of America, 1959, 31(11): 1572. doi: 10.1121/1.1908691
    [9]
    YANG K, MA Y, SUN C, et al. Multistep matched-field inversion for broad-band data from ASIAEX2001[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4): 964-972. doi: 10.1109/JOE.2004.835211
    [10]
    YANG K, CHAPMAN N R, MA Y. Estimating parameter uncertainties in Geoacoustic inversion by a neighbourhood algorithm[J]. Journal of the Acoustical Society of America, 2007, 121(2): 833-843. doi: 10.1121/1.2427125
    [11]
    LEI Z, YANG K, MA Y. Passive localization in the deep ocean based on cross-correlation function matching[J]. Journal of the Acoustical Society of America, 2016, 139(6): 196-201. doi: 10.1121/1.4954053
    [12]
    DUAN R, YANG K, MA Y, et al. Moving source localization with a single hydrophone using multipath time delays in the deep ocean[J]. Journal of the Acoustical Society of America, 2014, 136(2): 159-65. doi: 10.1121/1.4890664
    [13]
    HERSTEIN P D, COLE B F, BROWNING D G, et al. Sensitivity of shallow water transmission loss to source and receiver proximity to a hard bottom under downward refracting conditions[J]. Journal of the Acoustical Society of America, 1992, 92(4): 2302.
    [14]
    COLE B F, PODESZWA E M. Shallow-water propagation under downward-refraction conditions[J]. Journal of the Acoustical Society of America, 1977, 41(6): 1479-1484.
    [15]
    COHEN J S, COLE B F. Shallow-water propagation under downward-refraction conditions. II[J]. Journal of the Acoustical Society of America, 1966, 40(5): 1244.
    [16]
    ZHANG Z Y. Analytical formulas for incoherent transmission loss in shallow water based on effective approximations of seafloor depth and reflectivity[J]. The Journal of the Acoustical Society of America, 2016, 140(4): 3407-3410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(25) PDF Downloads(10) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return