• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 3
Jun  2025
Turn off MathJax
Article Contents
WANG Shuang, LÜ Feng, MA Feng, CHEN Si, ZHU Wei, HAN Feng, HUANG Qinyi. A Deep Learning-Based Solver for Underwater Explosion Shock Response Spectrum[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 545-551. doi: 10.11993/j.issn.2096-3920.2024-0144
Citation: WANG Shuang, LÜ Feng, MA Feng, CHEN Si, ZHU Wei, HAN Feng, HUANG Qinyi. A Deep Learning-Based Solver for Underwater Explosion Shock Response Spectrum[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 545-551. doi: 10.11993/j.issn.2096-3920.2024-0144

A Deep Learning-Based Solver for Underwater Explosion Shock Response Spectrum

doi: 10.11993/j.issn.2096-3920.2024-0144
  • Received Date: 2024-10-13
  • Accepted Date: 2024-12-04
  • Rev Recd Date: 2024-11-22
  • Available Online: 2024-12-27
  • Due to the short duration and complexity of ship shock responses, the shock response spectrum(SRS) is commonly used as a tool for analyzing these responses. To address the conflict between calculation speed and accuracy inherent in traditional SRS solving methods, this paper proposed a deep learning-based fast solver for the SRS. An adaptive threshold selection mechanism tailored to the characteristics of the SRS was designed to improve the solver’s calculation accuracy. A comparison between the SRS obtained by the proposed solver and the results calculated using traditional methods demonstrated a high degree of consistency, validating the effectiveness of the solver. Additionally, L2 regularization was introduced in the solution process, effectively preventing overfitting and further enhancing the robustness of the solver.

     

  • loading
  • [1]
    姚熊亮, 侯明亮, 李青, 等. Y型舷侧结构抗冲击性能数值仿真实验研究[J]. 哈尔滨工程大学学报, 2006, 27(6): 796-801. doi: 10.3969/j.issn.1006-7043.2006.06.002

    YAO X L, HOU M L, LI Q, et al. Numerical simulation research on counter-impingement capability of Y-shape shipboard structure[J]. Journal of Harbin Engineering University, 2006, 27(6): 796-801. doi: 10.3969/j.issn.1006-7043.2006.06.002
    [2]
    尹群, 陈永念, 张健, 等. 水下爆炸载荷作用下舰船结构动响应及新型防护结构[J]. 中国造船, 2007, 48(4): 42-52.

    YIN Q, CHEN Y N, ZHANG J, et al. Dynamic response of ship structures under underwater explosion loads and new protective structures[J]. Shipbuilding of China, 2016, 11(4): 51-58.
    [3]
    张振华, 牛闯, 钱海峰, 等. 六层金字塔点阵夹芯板结构在水下近距爆炸载荷下的冲击实验[J]. 中国舰船研究, 2016, 11(4): 51-58.

    ZHANG Z H, NIU C, QIAN H F, et al. Impact experiment of six-layer pyramidal lattices sandwich panels subjected to near field underwater explosion[J]. Chinese Journal of Ship Research, 2016, 11(4): 51-58.
    [4]
    WANG H, CHENG Y S, LIU J, et al. The fluid-solid interaction dynamics between underwater explosion bubble and corrugated sandwich plate[J]. Shock and Vibration, 2016, 2016(3): 1-21.
    [5]
    BATRA R C, HASSAN N M. Response of fiber reinforced composites to underwater explosive loads[J]. Composites Part B: Engineering, 2007, 38(4): 448-468. doi: 10.1016/j.compositesb.2006.09.001
    [6]
    LEBLANC J, SHUKLA A. Dynamic response of curved composite panels to underwater explosive loading: Experimental and computational comparisons[J]. Composite Structures, 2011, 93(11): 3072-3081. doi: 10.1016/j.compstruct.2011.04.017
    [7]
    LEBLANC J, SHUKLA A. Response of polyurea-coated flat composite plates to underwater explosive loading[J]. [J]. Journal of Composite Materials, 2015, 49(8): 965-980. doi: 10.1177/0021998314528263
    [8]
    LU L, MENGX H, MAOZ P, et al. DeepXDE: A deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. doi: 10.1137/19M1274067
    [9]
    冯麟涵, 杨俊杰, 焦立启. 基于RBF神经网络的船舶冲击谱速度数据挖掘与预报[J]. 振动与冲击, 2022, 41(13): 189-194.

    FENG L H, YANG J J, JIAO L Q. Data mining and prediction of ship shock spectral velocity based on RBF neural network[J]. Journal of Vibration and Shock, 2022, 41(13): 189-194.
    [10]
    ZHOU Y, MENG S, LOU Y, et al. Physics-informed deep learning-based real-time structural response prediction method[J]. Engineering, 2024, 35(4): 140-157. doi: 10.1016/j.eng.2023.08.011
    [11]
    高明贺, 石成英, 王游. 冲击响应谱分析方法研究[J]. 科技视界, 2012(28): 117-194.

    GAO M H, SHI C Y, WANG Y. Research on the analysis method of shock response spectrum[J]. Science & Technology Vision, 2012(28): 117-194.
    [12]
    施广宏, 石成英, 韩华锋. 系统部件对冲击载荷的响应分析[J]. 电子产品可靠性与环境试验, 2010(4): 24-26.

    SHI G H, SHI C Y, HAN H F. Analysis for shock response of parts[J]. Electronic Product Reliability and Environmental Testing, 2010(4): 24-26.
    [13]
    谢浩, 冯麟涵, 吴静波, 等. 舰船冲击谱若干计算方法比较研究[J]. 噪声与振动控制, 2017, 37(4): 115-120.

    XIE H, FENG L H, WU J B, et al. Comparative study on several calculation methods for ship’s shock spectra[J]. Noise and Vibration Control, 2017, 37(4): 115-120.
    [14]
    SMALLWOOD D O. An improved recursive formula for calculating shock response spectra[J]. Proceedings of the Shock and Vibration Symposium, 1981, 51(2): 211-217.
    [15]
    武国宁, 胡汇丰, 于萌萌. 深度学习中的正则化方法研究[J]. 计算机科学与应用, 2020, 10(6): 1224-1233. doi: 10.12677/CSA.2020.106126

    WU G N, HU H F, YU M M. Regularization methods in deep learning[J]. Computer Science and Application, 2020, 10(6): 1224-1233. doi: 10.12677/CSA.2020.106126
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article Views(113) PDF Downloads(21) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return