Citation: | Wang Shuang, Lv Feng, Ma Feng, Chen Si, Zhu Wei, Han Feng, Huang Qinyi. A Deep Learning-Based Solver for Underwater Explosion Shock Response Spectrum[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0144 |
[1] |
姚熊亮, 侯明亮, 李青, 等. Y型舷侧结构抗冲击性能数值仿真实验研究[J]. 哈尔滨工程大学学报, 2006, 27(6): 796-801. doi: 10.3969/j.issn.1006-7043.2006.06.002
YAO X L, HOU M L, LI Q, et al. Numerical simulation research on counter-impingement capability of Y-shape shipboard structure[J]. Journal of Harbin Engineering University, 2006, 27(6): 796-801. doi: 10.3969/j.issn.1006-7043.2006.06.002
|
[2] |
尹群, 陈永念, 张健, 等. 水下爆炸载荷作用下舰船结构动响应及新型防护结构[J]. 中国造船, 2007, 48(4): 42-52.
YIN Q, CHEN Y N, ZHANG J, et al. Dynamic response of ship structures under underwater explosion loads and new protective structures[J]. Shipbuilding of China, 2016, 11(4): 51-58.
|
[3] |
张振华, 牛闯, 钱海峰, 等. 六层金字塔点阵夹芯板结构在水下近距爆炸载荷下的冲击实验[J]. 中国舰船研究, 2016, 11(4): 51-58.
ZHANG Z H, NIU C, QIAN H F, et al. Impact experiment of six-layer pyramidal lattices sandwich panels subjected to near field underwater explosion[J]. Chinese Journal of Ship Research, 2016, 11(4): 51-58.
|
[4] |
WANG H, CHENG Y S, LIU J, et al. The Fluid-Solid Interaction Dynamics between Underwater Explosion Bubble and Corrugated Sandwich Plate[J]. Shock and Vibration, 2016, 2016(3): 1-21.
|
[5] |
BATRA R C, HASSAN N M. Response of Fiber Reinforced Composites to Underwater Explosive Loads[J]. Composites Part B Engineering, 2007, 38(4): 448-468. doi: 10.1016/j.compositesb.2006.09.001
|
[6] |
LEBLANC J, SHUKLA A. Dynamic Response of Curved Composite Panels to Underwater Explosive Loading: Experimental and Computational Comparisons[J]. Composite Structures, 2011, 93(11): 3072-3081. doi: 10.1016/j.compstruct.2011.04.017
|
[7] |
LEBLANC J, SHUKLA A. Response of Polyurea-coated Flat Composite Plates to Underwater Explosive Loading[J]. Journal of Composite Materials, 2015, 49(8): 965-980. doi: 10.1177/0021998314528263
|
[8] |
LUL, MENGX H, MAOZ P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. doi: 10.1137/19M1274067
|
[9] |
冯麟涵, 杨俊杰, 焦立启. 基于RBF神经网络的船舶冲击谱速度数据挖掘与预报[J]. 振动与冲击, 2022, 41(13): 189-194.
FENG L H, YANG J J, JIAO L Q. Data mining and prediction of ship shock spectral velocity based on RBF neural network[J]. Journal of Vibration and Shock, 2022, 41(13): 189-194.
|
[10] |
ZHOU Y, MENG S, LOU Y, et al. Physics-Informed Deep Learning-Based Real-Time Structural Response Prediction Method[J]. Engineering, 2024, 35(4): 140-157. doi: 10.1016/j.eng.2023.08.011
|
[11] |
高明贺, 石成英, 王游. 冲击响应谱分析方法研究[J]. 科技视界, 2012(28): 117-194.
GAO M H, SHI C Y, WANG Y. Research on the Analysis Method of Shock Response Spectrum[J]. Science & Technology Vision, 2012(28): 117-194.
|
[12] |
施广宏, 石成英, 韩华锋. 系统部件对冲击载荷的响应分析[J]. 电子产品可靠性与环境试验, 2010(4): 24-26.
XIE G H, SHI C Y, HAN H F. Analysis for Shock Response of Parts[J]. Electronic Product Reliability and Environmental Testing, 2010(4): 24-26.
|
[13] |
谢浩, 冯麟涵, 吴静波, 李晓文, 郭君. 舰船冲击谱若干计算方法比较研究[J]. 噪声与振动控制, 2017, 37 (4): 115-120.
XIE H, FENG L H, WU J B, et al. Comparative Study on Several Calculation Methods for Ship’s Shock Spectra[J]. Noise and Vibration Control, 2017, 37 (4): 115-120.
|
[14] |
SMALLWOOD D. Improved recursive formula for calculating shock response spectra[J]. 1980.
|
[15] |
武国宁, 胡汇丰, 于萌萌. 深度学习中的正则化方法研究[J]. 计算机科学与应用, 2020, 10(6): 1224-1233. doi: 10.12677/CSA.2020.106126
WU G N, HU H F, YU M M. Regularization Methods in Deep Learning[J]. Computer Science and Application, 2020, 10(6): 1224-1233. doi: 10.12677/CSA.2020.106126
|