• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 4
Aug  2025
Turn off MathJax
Article Contents
HUANG Qinyi, ZHU Wei, MA Feng, CHEN Si, WANG Shuang. Analysis of Multi-Degree-of-Freedom Equipment Shock Response Based on Deep Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 623-629. doi: 10.11993/j.issn.2096-3920.2024-0143
Citation: HUANG Qinyi, ZHU Wei, MA Feng, CHEN Si, WANG Shuang. Analysis of Multi-Degree-of-Freedom Equipment Shock Response Based on Deep Learning[J]. Journal of Unmanned Undersea Systems, 2025, 33(4): 623-629. doi: 10.11993/j.issn.2096-3920.2024-0143

Analysis of Multi-Degree-of-Freedom Equipment Shock Response Based on Deep Learning

doi: 10.11993/j.issn.2096-3920.2024-0143
  • Received Date: 2024-10-10
  • Accepted Date: 2024-11-14
  • Rev Recd Date: 2024-11-04
  • Available Online: 2024-12-09
  • To analyze the response of multi-degree-of-freedom ship equipment under explosive shock loads, this study proposed a deep learning-based shock response prediction model. Traditional single-degree-of-freedom models struggle to efficiently analyze the complex shock responses of multi-degree-of-freedom systems. By leveraging deep learning technology, especially the data feature extraction and nonlinear modeling capabilities of neural networks, this model learned the correlation between shock spectra and input shock loads from numerical simulation data, enabling efficient and accurate calculation of shock response spectra at critical points in ship structures. This approach overcame the limitations of existing models in handling multi-degree-of-freedom equipment and met the demand for rapid and precise analysis of complex system shock responses. Experimental results show that the model can accurately predict the shock response spectra of multi-degree-of-freedom equipment, with a relative error of less than 8% compared to simulation data, effectively resolving the bottlenecks of traditional models in multi-degree-of-freedom system analysis.

     

  • loading
  • [1]
    刘永明, 孙焕新, 杨裕根. 多自由度系统冲击谱研究[J]. 上海铁道大学学报(自然科学版), 1998, 23(6): 52-57.

    LIU Y M, SUN H X, YANG Y G. A study on shock spectrum of multiple degrees of freedom system[J]. Journal of Shanghai Tiedao University(Natural Science Edition), 1998, 23(6): 52-57.
    [2]
    姜涛, 周方毅, 张可玉, 等. 水面舰艇甲板设备抗冲击设计谱分析[J]. 工程爆破, 2009, 15(4): 8-12.

    JIANG T, ZHOU F Y, ZHANG K Y, et al. Analysis on design shock-resistant spectrum of equipment fixed on deck[J]. Engineering Blasting, 2009, 15(4): 8-12.
    [3]
    OH J S, LEE TH, CHOI S B. Design and analysis of a new magnetorheological damper for generation of tunable shock-wave profiles[J]. Shock and Vibration, 2018: 8963491.
    [4]
    TRUONG D D, JANG B S, JU H B. Development of simplified method for prediction of structural response of stiffened plates under explosion loads[J]. Marine Structures, 2021, 79: 103039. doi: 10.1016/j.marstruc.2021.103039
    [5]
    LIU Y, REN S F, ZHAO P F. Application of the deep neural network to predict dynamic responses of stiffened plates subjected to near-field underwater explosion[J]. Ocean Engineering, 2022, 247: 110537. doi: 10.1016/j.oceaneng.2022.110537
    [6]
    BRUNTON S L, KUTZ J N. Data-driven science and engineering: Machine learning, dynamical systems, and control[M]. 2nd ed. Cambridge: Cambridge University Press, 2022.
    [7]
    钱丽娜. 基于神经网络的水下加筋圆柱壳冲击环境预报[D]. 哈尔滨: 哈尔滨工程大学, 2021.
    [8]
    冯麟涵, 杨俊杰, 焦立启. 基于RBF神经网络的船舶冲击谱速度数据挖掘与预报[J]. 振动与冲击, 2022, 41(13): 189-194, 210.

    FENG L H, YANG J J, JIAO L Q. Data mining and prediction of ship shock spectral velocity based on RBF neural network[J]. Journal of Vibration and Shock, 2022, 41(13): 189-194, 210.
    [9]
    ZHANG M, DRIKAKIS D, LI L, et al. Machine-learning prediction of underwater shock loading on structures[J]. Computation, 2019, 7(4): 58. doi: 10.3390/computation7040058
    [10]
    HEMATI M S, SAPSIS T P. Physics-informed machine learning for predicting extreme events in complex systems[J]. Physical Review Letters, 2017, 118: 084501. doi: 10.1103/PhysRevLett.118.084501
    [11]
    YU Y, YAO H, LIU Y. Structural dynamics simulation using a novel physics-guided machine learning method[J]. Engineering Applications of Artificial Intelligence, 2020, 96: 103947. doi: 10.1016/j.engappai.2020.103947
    [12]
    MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technimetrics, 1979, 21(2): 239-245.
    [13]
    GUO J, GU C, YANG J, et al. Data mining and application of ship impact spectrum acceleration based on PNN neural network[J]. Ocean Engineering, 2020, 203: 107193. doi: 10.1016/j.oceaneng.2020.107193
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article Views(112) PDF Downloads(22) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return