Citation: | HUANG Qinyi, ZHU Wei, MA Feng, CHEN Si, WANG Shuang. Multi-Degree-of-Freedom Equipment Shock Response Model Based on Deep Learning[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0143 |
[1] |
刘永明, 孙焕新, 杨裕根. 多自由度系统冲击谱研究[J]. 上海铁道大学学报(自然科学版), 1998, 23(6): 52-57.
LIU YM, SUN HX, YANG Y G. A study on shock spectrum of multiple degrees of freedom system[J]. Journal of Shanghai Tiedao University (Natural Science Edition), 1998, 23(6): 52-57.
|
[2] |
姜涛, 周方毅, 张可玉等. 水面舰艇甲板设备抗冲击设计谱分析[J]. 工程爆破, 2009, 15(4): 8-12.
JIANG T, ZHOU F Y, ZHANG K Y, et al. Analysis on design shock-resistant spectrum of equipment fixed on deck[J]. Engineering Blasting, 2009, 15(4): 8-12.
|
[3] |
OH J S, LEE TH, CHOI S B. Design and analysis of a new magnetorheological damper for generation of tunable shock-wave profiles[J]. Shock and Vibration, 2018, 2018: 8963491(1).
|
[4] |
TRUONG D D, JANG B S, JU HB. Development of simplified method for prediction of structural response of stiffened plates under explosion loads[J]. Marine Structures, 2021, 79: 103039. doi: 10.1016/j.marstruc.2021.103039
|
[5] |
LIU Y, REN S F, ZHAO P F. Application of the deep neural network to predict dynamic responses of stiffened plates subjected to near-field underwater explosion[J]. Ocean Engineering, 2022, 247: 110537. doi: 10.1016/j.oceaneng.2022.110537
|
[6] |
BRUNTON S L, KUTZ J N. Data-driven science and engineering: Machine learning, dynamical systems, and control[M]. 2nd ed. Cambridge: Cambridge University Press, 2022.
|
[7] |
钱丽娜. 基于神经网络的水下加筋圆柱壳冲击环境预报[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
[8] |
冯麟涵, 杨俊杰, 焦立启. 基于RBF神经网络的船舶冲击谱速度数据挖掘与预报[J]. 振动与冲击, 2022, 41(13): 189-194, 210.
FENG L H, YANG J J, JIAO L Q. Data mining and prediction of ship shock spectral velocity based on RBF neural network[J]. Journal of Vibration and Shock, 2022, 41(13): 189-194, 210.
|
[9] |
ZHANG M, DRIKAKIS D, LI L, et al. Machine-learning prediction of underwater shock loading on structures[J]. Computation, 2019, 7(4): 58. doi: 10.3390/computation7040058
|
[10] |
HEMATI M S, SAPSIS T P. Physics-informed machine learning for predicting extreme events in complex systems[J]. Physical Review Letters, 2017, 118: 084501. doi: 10.1103/PhysRevLett.118.084501
|
[11] |
YU Y, YAO H, LIU Y. Structural dynamics simulation using a novel physics-guided machine learning method[J]. Engineering Applications of Artificial Intelligence, 2020, 96: 103947. doi: 10.1016/j.engappai.2020.103947
|
[12] |
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technimetrics, 1979, 21(2): 239-245.
|
[13] |
GUO J, GU C, YANG J, et al. Data mining and application of ship impact spectrum acceleration based on PNN neural network[J]. Ocean Engineering, 2020, 203: 107193. doi: 10.1016/j.oceaneng.2020.107193
|