Citation: | YAN Kan. Study on the Explosive Damage Dynamics of Typical Underwater Vehicles[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0139 |
[1] |
彭依云, 王铭明, 高长伟. 近场水下爆炸冲击波对板架结构毁伤特性研究[J]. 船舶力学, 2020, 24(8): 1081-1090. doi: 10.3969/j.issn.1007-7294.2020.08.013
PENG Y Y, WANG M M, GAO C W. Research on the damage characteristics of grillage structures subjected to near-field underwater blast wave[J]. Journal of Ship Mechanics, 2020, 24(8): 1081-1090. doi: 10.3969/j.issn.1007-7294.2020.08.013
|
[2] |
LIU N N, ZHANG A M, CUI P, et al. Interaction of two out-of-phase underwater explosion bubbles[J]. Physics of Fluids, 2021, 33(10): 106103. doi: 10.1063/5.0064164
|
[3] |
HUANG X, HU J, ZHANG X, et al. Effect of bubble pulse on concrete gravity dam subjected to underwater explosion: Centrifuge test and numerical simulation[J]. Ocean Engineering, 2022, 243: 110291. doi: 10.1016/j.oceaneng.2021.110291
|
[4] |
徐维铮, 赵宏涛, 李业勋, 等. 水下近距/接触爆炸加载下圆柱壳结构动态响应行为试验研究[J]. 爆炸与冲击, 2023, 43(9): 209-219.
XU W Z, ZHAO H T, LI Y X, et al. An experimental study on dynamic response of cylindrical shell under near-field/contact underwater explosion[J]. Explosion and Shock Waves, 2023, 43(9): 209-219.
|
[5] |
YUAN J H, ZHU X. Dynamic response of a ring-stiffened cylindrical shell subjected to underwater explosive loading[J]. Applied Mechanics and Materials, 2012, 105: 931-936.
|
[6] |
贾宪振, 胡毅亭, 董明荣, 等. 水下爆炸冲击波毁伤鱼雷壳体结构的数值仿真研究[J]. 弹箭与制导学报, 2008(4): 127-130. doi: 10.3969/j.issn.1673-9728.2008.04.039
JIA X Z, HU Y T, DONG M R, et al. Numerical simulation study on underwater explosion shock wave damaging torpedo shell structure[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008(4): 127-130. doi: 10.3969/j.issn.1673-9728.2008.04.039
|
[7] |
陈高杰, 宋英杰, 邢津浩. 双爆源水下爆炸对圆柱壳结构的毁伤特性研究[J]. 中国舰船研究, 2024, 19(3): 134-149.
CHEN G J, SONG Y J, XING J H. Damage characteristics of cylindrical shell structure subjected to double UNDEX[J]. Chinese Journal of Ship Research, 2024, 19(3): 134-149 .
|
[8] |
赵伟成, 翟红波, 毛伯永. 协同爆炸时冲击波毁伤效应研究综述[J]. 兵器装备工程学报, 2023, 44(12): 123-132. doi: 10.11809/bqzbgcxb2023.12.017
ZHAO W C, ZHAI H B, MAO B Y. A review of research on damage effect of shock wave during coordinated explosion[J]. Journal of Ordnance Equipment Engineering, 2023, 44(12): 123-132. doi: 10.11809/bqzbgcxb2023.12.017
|
[9] |
HUANG X, MAO J W, LI Q, et al. On the interaction between the underwater explosion and the double-layer structure with an orifice on the outer plate[J]. Ocean Engineering, 2024, 306: 118050. doi: 10.1016/j.oceaneng.2024.118050
|
[10] |
杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析[J]. 中国舰船研究, 2023, 18(2): 55-63.
YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion[J]. Chinese Journal of Ship Research, 2023, 18(2): 55-63.
|
[11] |
SUN W F, ZHU T T, CHEN P W, et al. Dynamic implosion of submerged cylindrical shell under the combined hydrostatic and shock loading[J]. Thin-Walled Structures, 2022, 170: 108574. doi: 10.1016/j.tws.2021.108574
|
[12] |
DONEA J, HUERTA A, PONTHOT J P, et al. Arbitrary Lagrangian-Eulerian Methods[J]. Encyclopedia of computational mechanics, 2004(1): 1-23.
|
[13] |
BOMAN R, PONTHOT J P. Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian-Eulerian formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39-41): 4323-4353. doi: 10.1016/j.cma.2004.01.034
|
[14] |
KIM J H, SHIN H C. Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank[J]. Ocean Engineering, 2008, 35(8-9): 812-822 doi: 10.1016/j.oceaneng.2008.01.019
|
[15] |
郑永辉, 魏继锋. 水介质初始参数设置对水下爆炸载荷的影响[J]. 爆炸与冲击, 2022, 42(5): 63-72. doi: 10.11883/bzycj-2021-0485
ZHENG Y H, WEI J F. Effect of initial parameter setting of water on load characteristics of underwater explosion[J]. Explosion and Shock Waves, 2022, 42(5): 63-72. doi: 10.11883/bzycj-2021-0485
|
[16] |
LIN S, WANG J, LIU L, et al. Research on damage effect of underwater multipoint synchronous explosion shock waves on air-backed clamped circular plate[J]. Ocean Engineering, 2021, 240: 109985. doi: 10.1016/j.oceaneng.2021.109985
|
[17] |
ZHANG Q L, HUANG X Y, LI Z. Coupled acoustic-structural analysis of a partially submerged circular RC column in an underwater explosion event: Factors to be considered for loading[J]. Ocean Engineering, 2021, 232: 109122. doi: 10.1016/j.oceaneng.2021.109122
|
[18] |
朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验[J]. 中国造船, 2003(1): 49-55. doi: 10.3969/j.issn.1000-4882.2003.01.007
ZHU X, BAI X F, HUANG R B, et al. Crevasse Experiment Research of Plate Membrance in Vessels Subjected to Underwater Contact Explosion[J]. Shipbuilding of China, 2003(1): 49-55. doi: 10.3969/j.issn.1000-4882.2003.01.007
|
[19] |
陈继恩. 基于应力三轴度的材料失效研究[D]. 武汉: 华中科技大学, 2012.
|
[20] |
Liang H, Zhang Q, Long R, et al. Pulsation behavior of a bubble generated by a deep underwater explosion[J]. AIP Advances, 2019, 9(2): 025108-025108-7. doi: 10.1063/1.5086361
|
[21] |
Liang H , Zhang Q , Long R , et al. Pulsation behavior of a bubble generated by a deep underwater explosion[J]. AIP Advances, 2019, 9(2
|
[22] |
LI Q, LUO X, ZHONG Z X, et al. Damage Characteristics of Structure under Underwater Explosion and Bubble Flooding Loads[J]. Journal of Marine Science and Engineering, 2024, 12(10): 1709. doi: 10.3390/jmse12101709
|
[23] |
GAO Y, WANG S, ZHANG J, et al. Effects of underwater explosion depth on shock wave overpressure and energy[J]. Physics of Fluids, 2022, 34(3): 037108-037108-15. doi: 10.1063/5.0081107
|