• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
LI Jiayi, ZHOU Jianbo, LI Shaomeng, SHI Min, WANG Yafen. Passive Localization Of Underwater Broadband High-Frequency Targets Based on frequency Difference Matching Field[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0136
Citation: LI Jiayi, ZHOU Jianbo, LI Shaomeng, SHI Min, WANG Yafen. Passive Localization Of Underwater Broadband High-Frequency Targets Based on frequency Difference Matching Field[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0136

Passive Localization Of Underwater Broadband High-Frequency Targets Based on frequency Difference Matching Field

doi: 10.11993/j.issn.2096-3920.2024-0136
  • Received Date: 2024-09-11
  • Accepted Date: 2024-11-12
  • Rev Recd Date: 2024-11-04
  • Available Online: 2025-01-20
  • High frequency signals are easily affected by environmental uncertainty during propagation, leading to degradation of traditional matching field methods in high-frequency localization performance. To improve this problem, this article proposes a passive high-frequency signal localization method based on frequency difference matching field, which performs quadratic product processing on the received data of arrays with different frequencies within the high-frequency bandwidth to construct a sound field structure at the difference frequency much smaller than the original frequency. Apply the established matching field positioning algorithm at the difference frequency to reduce the broadband high-frequency signal to the low-frequency range for processing. Firstly, the principle of frequency difference method is presented and the grazing angle of shallow sea multipath propagation is accurately estimated. Based on this, physical models of frequency difference matching fields suitable for shallow sea and deep sea are proposed. Finally, simulation results show that the proposed method has significantly better localization performance for high-frequency signals in uncertain environments than traditional methods.

     

  • loading
  • [1]
    杨坤德, 马远良, 邹士新, 等. 基于环境扰动的线性匹配场处理方法[J]. 声学学报, 2006, 31(6): 496-505 doi: 10.3321/j.issn:0371-0025.2006.06.004

    YANG K D, MA Y L, ZOU S X, et al. Linear matched field processing based on environmental perturbation[J]. Acta Acustica, 2006, 31(6): 496-505. doi: 10.3321/j.issn:0371-0025.2006.06.004
    [2]
    王学志, 涂英, 吴克桐, 等. 应用匹配场实现单矢量水听器的三维定位[J]. 声学技术, 2012, 31(1): 72-76 doi: 10.3969/j.issn1000-3630.2012.01.012

    WANG X Z, TU Y, WU K T, et al. Single vector hydrophone's 3D source location by applying matched field processing[J]. Acta Acustica, 2012, 31(1): 72-76. doi: 10.3969/j.issn1000-3630.2012.01.012
    [3]
    李倩倩, 李整林, 张仁和. 不确知海洋环境下的贝叶斯声源定位法[J]. 声学学报, 2014, 39(5): 535-543.

    LI Q Q, LI Z L, ZHANG R H. Bayesian localization in an uncertain ocean environment[J]. Acta Acustica, 2014, 39(5): 535-543.
    [4]
    段睿. 深海环境水声传播及声源定位方法研究[D]. 西安: 西北工业大学, 2016.
    [5]
    ARASE E M, ARASE T. Ambient sea noise in the deep and shallow ocean[J]. The Journal of the Acoustical Society of America, 1967, 42(1): 73-77. doi: 10.1121/1.1910577
    [6]
    王奇, 王英民, 苟艳妮. 浅海环境参数失配对匹配场处理的影响分析[J]. 计算机仿真, 2013, 30(6): 252-256, 413. doi: 10.3969/j.issn.1006-9348.2013.06.059

    WANG Q, WANG Y M, GOU Y N. Effect of environmental parameters mismatch to matched field processing in shallow water[J]. Computer Simulation, 2013, 30(6): 252-256, 413. doi: 10.3969/j.issn.1006-9348.2013.06.059
    [7]
    WORTHMANN B M, SONG H C, DOWLING D R. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.[J]. The Journal of the Acoustical Society of America, 2015, 138(6): 3549-3562. doi: 10.1121/1.4936856
    [8]
    BAGGEROER A B, KUPERMAN W A. An overview of matched field methods in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 1993, 18(4): 401-424. doi: 10.1109/48.262292
    [9]
    HURSKY P, PORTER M B, SIDERIUS M, et al. High-frequency (8–16 kHz) model-based source localization[J]. The Journal of the Acoustical Society of America, 2004, 115(6): 3021-3032. doi: 10.1121/1.1690078
    [10]
    COLLINS M D, KUPERMAN W A. Focalization: Environmental focusing and source localization[J]. The Journal of the Acoustical Society of America, 1991, 90(3): 1410-1422. doi: 10.1121/1.401933
    [11]
    ABADI S H, SONG H C, DOWLING D R. Broadband sparse-array blind deconvolution using frequency-difference beamforming[J]. The Journal of the Acoustical Society of America, 2012, 132(5): 3018-3029. doi: 10.1121/1.4756920
    [12]
    DOUGLASS A S, SONG H C, DOWLING D R. Performance comparisons of frequency-difference and conventional beamforming[J]. The Journal of the Acoustical Society of America, 2017, 142(3): 1663-1673. doi: 10.1121/1.5003787
    [13]
    LIPA J E, WORTHMANN B M , DOWLING D R . Measurement of autoproduct fields in a Lloyd's mirror environment[J]. The Journal of the Acoustical Society of America, 2018, 143(4): 2419-2427.
    [14]
    WORTHMANN B M, DOWLING D R. Autoproducts in and near acoustic shadow zones created by barriers[J]. The Journal of the Acoustical Society of America, 2020, 147(3): 1863-1873. doi: 10.1121/10.0000953
    [15]
    WORTHMANN B M, DOWLING D R. The effects of refraction and caustics on autoproducts[J]. The Journal of the Acoustical Society of America, 2020, 147(6): 3959-3968. doi: 10.1121/10.0001399
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(5)

    Article Metrics

    Article Views(31) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return