Citation: | JIAO Wenpei, LI Jie, ZHANG Chunyan, XIE Guangming, XIAO Wendong, ZHANG Jianlei. Intelligent Perception Algorithms for Sonar Images: A Review[J]. Journal of Unmanned Undersea Systems, 2025, 33(3): 559-572. doi: 10.11993/j.issn.2096-3920.2024-0127 |
[1] |
HUO G, WU Z, LI J. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data[J]. IEEE Access, 2020, 8: 47407-47418. doi: 10.1109/ACCESS.2020.2978880
|
[2] |
GERG I D, MONGA V. Structural prior driven regularized deep learning for sonar image classification[EB/OL]. IEEE Transactions on Geoscience and Remote Sensing, (2020-10-26)[2025-05-29]. http://arXiv:2010.13317 (cs.CV).
|
[3] |
NGUYEN H T, LEE E H, LEE S. Study on the classification performance of underwater sonar image classification based on convolutional neural networks for detecting a submerged human body[J]. Sensors, 2020, 20(1): 94.
|
[4] |
HUO G, YANG S X, LI Q, et al. A robust and fast method for sidescan sonar image segmentation using nonlocal despeckling and active contour model[J]. IEEE Transactions on Cybernetics, 2016, 47(4): 855-872.
|
[5] |
YUAN F, XIAO F, ZHANG K, et al. Noise reduction for sonar images by statistical analysis and fields of experts[J]. Journal of Visual Communication and Image Representation, 2021, 74: 102995. doi: 10.1016/j.jvcir.2020.102995
|
[6] |
MCKAY J, MONGA V, RAJ R G. Robust sonar ATR through Bayesian pose-corrected sparse classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5563-5576. doi: 10.1109/TGRS.2017.2710040
|
[7] |
YE X, LI C, ZHANG S, et al. Research on side-scan sonar image target classification method based on transfer learning[C]//OCEANS MTS/IEEE Charleston. Harbin, China: IEEE, 2018.
|
[8] |
OCHAL M, VAZQUEZ J, PETILLOT Y, et al. A comparison of few-shot learning methods for underwater optical and sonar image classification[C]//Global Oceans 2020. Singapore: IEEE, 2020: 1-10.
|
[9] |
NOVAKOVIC J . Using information gain attribute evaluation to classify sonar targets[J]. Telecommunications Forum Telfor, 2009: 1351-1354.
|
[10] |
REED S, PETILLOT Y, BELL J. An automatic approach to the detection and extraction of mine features in sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 90-105. doi: 10.1109/JOE.2002.808199
|
[11] |
KUMAR N, TAN Q F, NARAYANAN S S. Object classification in sidescan sonar images with sparse representation techniques[C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Kyoto, Japan: ICASSP, 2012: 1333-1336.
|
[12] |
MCKAY J, GERG I, MONGA V, et al. What’s mine is yours: Pretrained CNNs for limited training sonar ATR[C]//Oceans 2017-Anchorage. Anchorage, USA: IEEE, 2017: 1-4.
|
[13] |
WANG X, JIAO J, YIN J, et al. Underwater sonar image classification using adaptive weights convolutional neural network[J]. Applied Acoustics, 2019, 146(3): 145-154.
|
[14] |
VALDENEGRO-TORO M. Real-time convolutional networks for sonar image classification in low-power embedded systems[EB/OL]. (2017-09-06)[2025-05-29]. https://arxiv.org/abs/1709.02153.
|
[15] |
WILLIAMS D P. On the use of tiny convolutional neural networks for human-expert-level classification performance in sonar imagery[J]. IEEE Journal of Oceanic Engineering, 2020, 46(1): 236-260.
|
[16] |
ZHU P, ISAACS J, FU B, et al. Deep learning feature extraction for target recognition and classification in underwater sonar images[C]//2017 IEEE 56th Annual Conference on Decision and Control(CDC). Melbourne, Australia: IEEE, 2017: 2724-2731.
|
[17] |
SINGH D, VALDENEGRO-TORO M. Deep neural networks for marine debris detection in sonar images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021: 3741-3749.
|
[18] |
CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Angeles, USA: CVPR, 2019: 9268-9277.
|
[19] |
JIAO W P, ZHANG J L, ZHANG C Y. Open-set recognition with long-tail sonar images[J]. Expert Systems with Applications, 2024, 249: 123495.
|
[20] |
ZHU X, LIANG Y, ZHANG J, et al. STAFNet: Swin transformer based anchor-free network for detection of forward-looking sonar imagery[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval. Newark, USA: ACM, 2022: 443-450.
|
[21] |
ZHANG P, TANG J, ZHONG H, et al. Self-trained target detection of radar and sonar images using automatic deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
|
[22] |
XIE K, YANG J, QIU K. A dataset with multibeam forward-looking sonar for underwater object detection[J]. Scientific Data, 2022, 9(1): 739. doi: 10.1038/s41597-022-01854-w
|
[23] |
LIANG Y, ZHU X, ZHANG J. MiTU-Net: An efficient mix transformer U-like network for forward-looking sonar image segmentation[C]//2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence. Changsha, China: CCAI, 2022: 149-154.
|
[24] |
CHENG Z, HUO G, LI H. A multi-domain collaborative transfer learning method with multi-scale repeated attention mechanism for underwater side-scan sonar image classification[J]. Remote Sensing, 2022, 14(2): 355. doi: 10.3390/rs14020355
|
[25] |
JIAO W, ZHANG J. Sonar images classification while facing long-tail and few-shot[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-20.
|
[26] |
ZHU M, SONG Y, GUO J, et al. PCA and kernel-based extreme learning machine for side-scan sonar image classification[C]//2017 IEEE Underwater Technology(UT). Busan, Korea: IEEE, 2017: 1-4.
|
[27] |
KUMAR N, MITRA U, NARAYANAN S S. Robust object classification in underwater sidescan sonar images by using reliability-aware fusion of shadow features[J]. IEEE Journal of Oceanic Engineering, 2014, 40(3): 592-606.
|
[28] |
WANG X, LIU X, JAPKOWICZ N, et al. Automated approach to classification of mine-like objects using multiple-aspect sonar images[J]. Journal of Artificial Intelligence and Soft Computing Research, 2014, 4(2): 133-148. doi: 10.1515/jaiscr-2015-0004
|
[29] |
MYERS V, FAWCETT J. A template matching procedure for automatic target recognition in synthetic aperture sonar imagery[J]. IEEE Signal Processing Letters, 2010, 17(7): 683-686. doi: 10.1109/LSP.2010.2051574
|
[30] |
TAO W, LIU Y. Combined imaging matching method of side scan sonar images with prior position knowledge[J]. IET Image Processing, 2018, 12(2): 194-199. doi: 10.1049/iet-ipr.2017.0172
|
[31] |
LIU H, YE X. Forward-looking sonar image stitching based on midline template matching in polar image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 1-10.
|
[32] |
LANE D M, STONER J P. Automatic interpretation of sonar imagery using qualitative feature matching[J]. IEEE Journal of Oceanic Engineering, 1994, 19(3): 391-405. doi: 10.1109/48.312915
|
[33] |
AYKIN M D, NEGAHDARIPOUR S. On feature matching and image registration for two-dimensional forward-scan sonar imaging[J]. Journal of Field Robotics, 2013, 30(4): 602-623. doi: 10.1002/rob.21461
|
[34] |
AYKIN M, NEGAHDARIPOUR S. On feature extraction and region matching for forward scan sonar imaging[C]//2012 Oceans. Yeosu, Korea: IEEE, 2012: 1-9.
|
[35] |
TUELLER P, KASTNER R, DIAMANT R. A comparison of feature detectors for underwater sonar imagery[C]//OCEANS 2018 MTS/IEEE Charleston. South Carolina, Charleston, USA: IEEE & MTS, 2018: 1-6.
|
[36] |
LU Z, SHI Y. A Novel target detector of marine radar based on HOG feature[C]//2021 IEEE International Conference on Mechatronics and Automation(ICMA). Takamatsu, Japan: IEEE, 2021: 727-732.
|
[37] |
FAKIRIS E, PAPATHEODOROU G. Sonar class: A MATLAB toolbox for the classification of side scan sonar imagery, using local textural and reverberational characteristics[C]//International Conference on Advanced Concepts for Intelligent Vision Systems(ACIVS 2006). Antwerp, Belgium: ACIVS, 2006: 488-499.
|
[38] |
HE J, CHEN J, XU H, et al. SonarNet: Hybrid CNN-transformer-HOG framework and multifeature fusion mechanism for forward-looking sonar image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-17.
|
[39] |
WANG X, WANG J, YANG F, et al. Target detection in colorful imaging sonar based on HOG[C]//2018 IEEE International Conference on Signal Processing, Communications and Computing(ICSPCC). Qingdao, China: IEEE, 2018: 1-5.
|
[40] |
LIN Y, LIU B. Underwater image bidirectional matching for localization based on SIFT[J]. Journal of Marine Science and Application, 2014, 13(2): 225-229. doi: 10.1007/s11804-014-1252-z
|
[41] |
XU H, YUAN H. An SVM-based AdaBoost cascade classifier for sonar image[J]. IEEE Access, 2020, 8: 115857-115864. doi: 10.1109/ACCESS.2020.3004473
|
[42] |
ERKMEN B, YLDRM T. Improving classification performance of sonar targets by applying general regression neural network with PCA[J]. Expert Systems with Applications, 2008, 35(1-2): 472-475. doi: 10.1016/j.eswa.2007.07.021
|
[43] |
JI X, YANG B, TANG Q. Seabed sediment classification using multibeam backscatter data based on the selecting optimal random forest model[J]. Applied Acoustics, 2020, 167: 107387. doi: 10.1016/j.apacoust.2020.107387
|
[44] |
NAIT-CHABANE A, ZERR B, LE CHENADEC G. Sidescan sonar imagery segmentation with a combination of texture and spectral analysis[C]//2013 MTS/IEEE OCEANS. Bergen, Norway: IEEE & MTS, 2013: 1-6.
|
[45] |
FEBRIAWAN H, HELMHOLZ P, PARNUM I. Support vector machine and decision tree based classification of side-scan sonar mosaics using textural features[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 42(1): 27-34.
|
[46] |
WANG J , XIAO L D , ZHOU P. Current situation and review of image segmentation[J]. Recent Patents on Computer Science, 2017, 10(1): 70-79.
|
[47] |
LU Z, CHEN Y C, ZHANG T D, et al. A sonar image segmentation algorithm based on two-dimensional spatio-temporal fuzzy entropy[C]//2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications. Wuhan, China: IEEE, 2018: 1-5.
|
[48] |
LIU L, BIAN H, YAGI S-I, et al. A prior-knowledge-based threshold segmentation method of forward-looking sonar images for underwater linear object detection[J]. Japanese Journal of Applied Physics, 2016, 55(7): 07KG06.
|
[49] |
YUAN X, MARTNEZ J-F, ECKERT M, et al. Án improved Otsu threshold segmentation method for underwater simultaneous localization and mapping-based navigation[J]. Sensors, 2016, 16(7): 1148. doi: 10.3390/s16071148
|
[50] |
TAN X, WANG C, CHEN T, et al. Forward looking sonar image segmentation based on empirical mode decomposition[J]. Journal of Physics: Conference Series, 2022: 012063.
|
[51] |
SONG S , SI B , FENG X, et al. Prior parameter estimation for Ising-MRF-based sonar image segmentation by local center-encoding[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1-5.
|
[52] |
SONG S, SI B, FENG X, et al. Label field initialization for MRF-based sonar image segmentation by selective autoencoding[C]//OCEANS 2016-Shanghai. Shanghai, China: IEEE, 2016: 1-5.
|
[53] |
BANERJEE S, RAY R, SHOME S N, et al. Noise induced feature enhancement and object segmentation of forward looking SONAR image[J]. Procedia Technology, 2014, 14: 125-132. doi: 10.1016/j.protcy.2014.08.017
|
[54] |
LIU G Y, PANG Y J, BIAN H Y, et al. Sonar image segmentation using the level set method without re-initialization[J]. Advanced Materials Research, 2014, 981: 368-371. doi: 10.4028/www.scientific.net/AMR.981.368
|
[55] |
OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//Proceedings of 12th International Conference on Pattern Recognition. Lisbon, Portugal: IEEE, 1994: 582-585.
|
[56] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). California, San Diego, USA: IEEE, 2005: 886-893.
|
[57] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations (ICLR), San Diego, USA: ICRL, 2015: 1-14.
|
[58] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: 2016: 770-778.
|
[59] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Nevada, Las Vegas, USA: IEEE, 2016: 2818-2826.
|
[60] |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, Honolulu, USA: IEEE, 2017: 4700-4708.
|
[61] |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-01)[2025-05-06]. http://arXivpreprint arXiv:1704.04861.
|
[62] |
TAN M, LE Q. Efficientnet: Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning. Vienna, Austria: PMLR, 2019: 6105-6114.
|
[63] |
DOSOVITSKIY A. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. (2020-12-01)[2025-05-06]. http://arxivpreprint arxiv:2010.11929.
|
[64] |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, Canada: IEEE, 2021: 10012-10022.
|
[65] |
RUTLEDGE J, YUAN W, WU J, et al. Intelligent shipwreck search using autonomous underwater vehicles[C]//2018 IEEE International Conference on Robotics and Automation(ICRA). Brisbane, Australia: IEEE, 2018: 6175-6182.
|
[66] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Nevada, Las Vegas, USA: IEEE, 2016: 779-788.
|
[67] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Computer Vision-ECCV 2016: 14th European Conference. Amsterdam, The Netherlands: ECCV, 2016: 21-37.
|
[68] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Amsterdam, Netherlands: IEEE, 2017: 2980-2988.
|
[69] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016, 39(6): 1137 - 1149.
|
[70] |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2961-2969.
|
[71] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision. Glasgow, Scotland: ECCV, 2020: 213-229.
|
[72] |
SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Tennessee, Nashville, USA: IEEE, 2021: 14454-14463.
|
[73] |
ZHU X, SU W, LU L, et al. Deformable DETR: Deformable transformers for end-to-end object detection[C]//International Conference on Learning Representations. Addis Ababa, Ethiopia: ICLR, 2020: 1-12.
|
[74] |
WANG Z, GUO J, ZENG L, et al. MLFFNet: Multilevel feature fusion network for object detection in sonar images[C]//IEEE Transactions on Geoscience and Remote Sensing. New York, USA: IEEE, 2022: 1-19.
|
[75] |
KVASIC I, MIŠKOVIC N, VUKIC Z. Convolutional neural network architectures for sonar-based diver detection and tracking[C]//OCEANS 2019-Marseille. Marseille, France: IEEE, 2019: 1-6.
|
[76] |
SUNG M, CHO H, KIM T, et al. Crosstalk removal in forward scan sonar image using deep learning for object detection[J]. IEEE Sensors Journal, 2019, 19(21): 9929-9944. doi: 10.1109/JSEN.2019.2925830
|
[77] |
CHEN G, MAO Z, WANG K, et al. HTDet: A hybrid transformer-based approach for underwater small object detection[J]. Remote Sensing, 2023, 15(4): 1-16.
|
[78] |
ZHOU X, TIAN K, ZHOU Z, et al. SID-TGAN: A transformer-based generative adversarial network for sonar image despeckling[J]. Remote Sensing, 2023, 15(20): 5072. doi: 10.3390/rs15205072
|
[79] |
CHEN R, ZHAN S, CHEN Y. Underwater target detection algorithm based on YOLO and Swin transformer for sonar images[C]//OCEANS 2022. Virginia, Virginia Beach, USA: IEEE, 2022: 1-7.
|
[80] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, Massachusetts, USA: IEEE, 2015: 3431-3440.
|
[81] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
|
[82] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
[83] |
RONNEBERGER O, FISCHER P, BROX T. U-NET: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Aassisted Intervention-MICCAI 2015: 18th International Conference. Munich, Germany: Springer, 2015, 18(3): 234-241.
|
[84] |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning where to look for the pancreas[C]// Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2022.
|
[85] |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 39(6): 1856-1867.
|
[86] |
HUANG H, LIN L, TONG R, et al. UNet 3+: A full-scale connected UNET for medical image segmentation[C]//ICASSP 2020 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Barcelona, Spain: IEEE, 2020: 1055-1059.
|
[87] |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, Honolulu, USA: IEEE, 2017: 2881-2890.
|
[88] |
LIANG-CHIEH C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFS[C]//International Conference on Learning Representations. San Diego,California, USA: IEEE, 2015.
|
[89] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
|
[90] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-06-01)[2025-05-06]. http://arXiv preprint arXiv: 1706.05587.
|
[91] |
ZHANG T, LIU S, HE X, et al. Underwater target tracking using forward-looking sonar for autonomous underwater vehicles[J]. Sensors, 2019, 20(1): 1-16. doi: 10.3390/s20010001
|
[92] |
GUSSEN C M, DINIZ P S, CAMPOS M L, et al. A survey of underwater wireless communication technologies[J]. J. Commun. Inf. Sys, 2016, 31(1): 242-255.
|
[93] |
LIANG Y, ZHU X, ZHANG J. Maanu-Net: Multi-level attention and atrous pyramid nested U-Net for wrecked objects segmentation in forward-looking sonar images[C]//2022 IEEE International Conference on Image Processing (ICIP). Bordeaux, France: IEEE, 2022: 736-740.
|