• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
LIU Shuwei, CHENG Jianqing, LIU kai. UUV threat assessment method based on EBM[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0121
Citation: LIU Shuwei, CHENG Jianqing, LIU kai. UUV threat assessment method based on EBM[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0121

UUV threat assessment method based on EBM

doi: 10.11993/j.issn.2096-3920.2024-0121
  • Received Date: 2024-07-09
  • Accepted Date: 2024-09-25
  • Rev Recd Date: 2024-09-21
  • Available Online: 2024-10-28
  • In order to solve the problems of lack of data mining ability and insufficient explanatory nature of neural network algorithms when traditional threat assessment methods process complex battlefield situation data, this paper proposes an innovative solution: unmanned undersea vehicle(UUV) threat assessment model based on Explainable Boosting Machine(EBM). As an advanced machine learning technology, EBM cleverly integrates gradient boosting and generalized additive model to achieve the perfect combination of high interpretability of linear model and accuracy of gradient boosting algorithm. In this study, the performance of the EBM model was comprehensively evaluated and compared with several other mainstream machine learning methods, including CatBoost, AdaBoost, and Deep Learning. Through simulation experiments, we found that the EBM model not only maintained high interpretability, but also showed excellent accuracy, the accuracy of the EBM model reached 98.10% in the identification of threat levels. This result not only verifies the effectiveness of the EBM model in complex battlefield situation analysis, but also provides a solid theoretical foundation and technical support for UUV's autonomous decision-making.

     

  • loading
  • [1]
    汤志荔, 张安. 战场威胁估计理论与方法研究[J]. 火力与指挥控制, 2011, 36(9): 1-4. doi: 10.3969/j.issn.1002-0640.2011.09.001

    TANG Z L, ZHANG A. Survey of methods and theory for battlefield threat assessment[J]. Fire Control & Command Control, 2011, 36(9): 1-4. doi: 10.3969/j.issn.1002-0640.2011.09.001
    [2]
    董泽委. 陆战场低空多域场景下的集群目标威胁动态评估[J]. 清华大学学报(自然科学版), 2024, 64(8): 1380-1390.

    DONG Z W. Dynamic assessment of swarm target threat in low-altitude multi-domain scenario of land battlefield[J]. Journal of Tsinghua University(Natural Science Edition), 2024, 64(8): 1380-1390.
    [3]
    郭佳. 基于多属性决策的空中目标威胁评估方法研究[D]. 北京: 北京理工大学, 2017.

    GUO J. Research on threat assessment method of air target based on multi-attribute decision-making[D]. Beijing: Beijing Institute of Technology, 2017.
    [4]
    冯卉, 宋宝军, 张春梅. 基于改进灰色关联法的空袭目标威胁评估方法[J]. 运筹与管理, 2023, 32(9): 1-6.

    FENG H, SONG B J, ZHANG C M. Threat assessment method of air raid target based on improved grey correlation method[J]. Operations Research and Management, 2023, 32(9): 1-6.
    [5]
    王光源, 李浩民, 祝大程, 等. 基于熵权法-灰色关联法的海目标威胁度评估[J]. 指挥控制与仿真, 2023, 45(4): 57-61. doi: 10.3969/j.issn.1673-3819.2023.04.009

    WANG G Y, LI H M, ZHU D C, et al. Threat assessment of sea surface targets based on entropy weight method-grey correlation method[J]. Command & Control & Simulation, 2023, 45(4): 57-61. doi: 10.3969/j.issn.1673-3819.2023.04.009
    [6]
    李丹一. 基于贝叶斯网络的水下威胁评估方法研究[D]. 杭州: 浙江大学, 2021.

    LI D Y. Research on underwater threat assessment method based on Bayesian network[D]. Hangzhou: Zhejiang University, 2021.
    [7]
    李叶. 基于贝叶斯网络的战场目标威胁评估方法研究[D]. 西安: 西安工业大学, 2022.

    LI Y. Research on threat assessment method of battlefield target based on Bayesian network[D]. Xi'an: Xi'an University of Technology, 2022.
    [8]
    方伟, 张婷婷, 余应福, 等. 基于卷积神经网络的单机空战威胁评估[J]. 电子设计工程, 2023, 31(23): 12-16, 21.

    FANG W, ZHANG T T, YU Y F, et al. Threat assessment of stand-alone air combat based on convolutional neural network[J]. Electronic Design Engineering, 2023, 31(23): 12-16, 21.
    [9]
    杨童瑶, 杨风暴, 吉琳娜. 基于行为意图的海上目标动态威胁评估[J]. 探测与控制学报, 2021, 43(06): 84-91, 100.

    YANG T Y, YANG F B, JI L N. Journal of Detection and Control, 2021, 43(06): 84-91, 100.
    [10]
    翟翔宇, 杨风暴, 吉琳娜, 等. 标准化全连接残差网络空战目标威胁评估[J]. 火力与指挥控制, 2020, 45(6): 39-44.

    ZHAI X Y, YANG F B, JI L N, et al. Standardized Fully Connected Residual Network Air Combat Target Threat Assessment[J]. Firepower and Command Control, 2020, 45(6): 39-44.
    [11]
    柴慧敏, 张勇, 李欣粤, 等. 基于深度学习的空中目标威胁评估方法[J]. 系统仿真学报, 2022, 34(7): 1459-1467.

    CHAI H M, Zhang Y, Li X Y, et al. Threat assessment method for air targets based on deep learning[J]. Journal of System Simulation, 2022, 34(7): 1459-1467.
    [12]
    吕少楠. 基于深度学习的态势评估方法[D]. 西安: 西安电子科技大学, 2020.

    LV S N. Situation assessment method based on deep learning[D]. Xi'an: Xi’an University, 2020.
    [13]
    江达伟, 董阳阳, 张立东, 等. 基于深度学习的空中目标威胁评估技术研究[J/OL]. 系统仿真学报. https://doi.org/10.16182/j.issn1004731x.joss.23-1323.

    JIANG D W, DONG Y Y, ZHANG L D, et al. Research on Threat Assessment Technology of Air Targets Based on Deep Learning[J/OL]. Journal of System Simulation. https://doi.org/10.16182/j.issn1004731x.joss.23-1323.
    [14]
    周鑫, 徐荣武, 程果, 等. 基于OTPA声源级估计的被动声呐探测距离评估方法[J]. 中国舰船研究, 2022, 17(4): 114-120, 133.

    ZHOU X, XU R W, CHENG G, et al. Passive Sonar Detection Range Evaluation Method Based on OTPA Source Level Estimation[J]. Chinese Journal of Ship Research, 2022, 17(4): 114-120, 133.
    [15]
    徐齐胜, 许可乐, 窦勇, 等. 基于被动声呐音频信号的水中目标识别综述[J]. 自动化学报, 2024, 50(4): 649-673.

    XU Q S, XU K L, DOU Y, et al. A review of underwater target recognition based on passive sonar audio signal[J]. Acta Automatica Sinica, 2024, 50(4): 649-673.
    [16]
    张延风, 刘建书, 张士峰. 基于层次分析法和熵值法的目标多属性威胁评估[J]. 弹箭与制导学报, 2019, 39(2): 163-165.

    ZHANG Y F, LIU J S, ZHANG S F. Multi-attribute threat assessment of targets based on analytic hierarchy process and entropy method[J]. Journal of Projectiles, Rockets and Guidance, 2019, 39(2): 163-165.
    [17]
    LOU Y, CARUANA R, GEHRKE J. Intelligible models for classification and regression[C]//Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012: 150-158.
    [18]
    Rehman S, Rehman E, Ikram M, et al. Cardiovascular disease (CVD): assessment, prediction and policy implications[J]. BMC Public Health, 2021, 21: 1-14. doi: 10.1186/s12889-020-10013-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article Views(20) PDF Downloads(0) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return