• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 1
Mar  2025
Turn off MathJax
Article Contents
WANG Jia, GUAN Xiawei, ZHANG Hao, FU Shaobo, ZHANG Yu'ang, SONG Qinghua. Threshold-Based Segmentation Method for Underwater Moving Luminous Targets Combined with Background Modeling[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 92-98. doi: 10.11993/j.issn.2096-3920.2024-0107
Citation: WANG Jia, GUAN Xiawei, ZHANG Hao, FU Shaobo, ZHANG Yu'ang, SONG Qinghua. Threshold-Based Segmentation Method for Underwater Moving Luminous Targets Combined with Background Modeling[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 92-98. doi: 10.11993/j.issn.2096-3920.2024-0107

Threshold-Based Segmentation Method for Underwater Moving Luminous Targets Combined with Background Modeling

doi: 10.11993/j.issn.2096-3920.2024-0107
  • Received Date: 2024-06-05
  • Accepted Date: 2024-09-26
  • Rev Recd Date: 2024-09-17
  • Available Online: 2025-01-13
  • This paper presented an adaptive threshold-based segmentation method combined with background modeling for the visual positioning of underwater moving luminous targets. Initially, background modeling was conducted based on the Gaussian mixture model to screen out several dynamic regions in the image. Subsequently, the pixel features within these regions were analyzed in the HSV color space to determine the presence of a target. After identifying the target-containing regions, Otsu’s method was applied to calculate the threshold for segmentation within these regions. Finally, binarization was performed on target-containing regions based on the calculated threshold, facilitating target extraction. The algorithm was designed to alleviate the impact of brightness variations and clutter interference on visual positioning in complex underwater environments. It fully utilized the target’s motion state, as well as its color and brightness, combining background modeling with threshold-based segmentation to enhance the precision and stability of the segmentation. Experimental results indicate that the algorithm demonstrates strong adaptability to common issues in underwater visual positioning, such as changes in brightness, halo blur, and bubble interference. Furthermore, it does not rely on the selection of initial parameters, making it suitable for engineering applications.

     

  • loading
  • [1]
    李宇波, 朱效洲, 卢惠民, 等. 视觉里程计技术综述[J]. 计算机应用研究, 2012, 29(8): 2801-2805. doi: 10.3969/j.issn.1001-3695.2012.08.001

    LI Y B, ZHU X Z, LU H M, et al. Review on visual odometry technology[J]. Application Research of Computers, 2012, 29(8): 2801-2805. doi: 10.3969/j.issn.1001-3695.2012.08.001
    [2]
    张辉. 水的光学特性对水下光学成像质量影响的分析[J]. 电子测试, 2013(20): 261-262. doi: 10.3969/j.issn.1000-8519.2013.20.125

    ZHANG H. Analysis of optical properties of water on the influence of optical imaging quality under water[J]. Electronic Test, 2013(20): 261-262. doi: 10.3969/j.issn.1000-8519.2013.20.125
    [3]
    向文豪. 基于高斯混合模型的海面舰船目标检测[J]. 舰船科学技术, 2024, 46(1): 148-151.

    XIANG W H. Surface ship target detection based on Gaussian mixture model[J]. Ship Science and Technology, 2024, 46(1): 148-151.
    [4]
    王秀芬, 王汇源, 王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报(工学版), 2011, 41(1): 12-16.

    WANG X F, WANG H Y, WANG S. Underwater object detection based on background subtraction and a saliency map[J]. Journal of Shandong University(Engineering Science), 2011, 41(1): 12-16.
    [5]
    雷飞, 黄文路, 王雪丽. 基于YUV颜色空间码本模型的水下运动目标检测[J]. 计算机与应用化学, 2014, 31(4): 416-420.

    LEI F, HUANG W L, WANG X L. Underwater moving targets detection in YUV color space[J]. Computers and Applied Chemistry, 2014, 31(4): 416-420.
    [6]
    徐武, 王欣达, 高寒, 等. 融合改进人工蜂群与Otsu的图像分割算法[J]. 计算机仿真, 2023, 40(6): 229-233. doi: 10.3969/j.issn.1006-9348.2023.06.042

    XU W, WANG X D, GAO H, et al. Image segmentation algorithm by fusion of improved artificial bee colony and Otsu[J]. Computer Simulation, 2023, 40(6): 229-233. doi: 10.3969/j.issn.1006-9348.2023.06.042
    [7]
    徐硕, 姜言清, 李晔, 等. 智能水下机器人自主回收的双目视觉定位[J]. 哈尔滨工程大学学报, 2022, 43(8): 1084-1090. doi: 10.11990/jheu.202106079

    XU S, JIANG Y Q, LI Y, et al. A stereo vision localization method for autonomous recovery of autonomous underwater vehicle[J]. Journal of Harbin Engineering University, 2022, 43(8): 1084-1090. doi: 10.11990/jheu.202106079
    [8]
    STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//IEEE Computer Vision & Pattern Recognition. Fort Collins, USA: IEEE, 1999.
    [9]
    余鹏, 封举富. 基于高斯混合模型的纹理图像分割[J]. 中国图象图形学报, 2005, 10(3): 281-285. doi: 10.3969/j.issn.1006-8961.2005.03.003

    YU P, FENG J F. Texture image segmentation based on Gaussian mixture models[J]. Journal of Image and Graphics, 2005, 10(3): 281-285. doi: 10.3969/j.issn.1006-8961.2005.03.003
    [10]
    彭明阳, 王建华, 闻祥鑫, 等. 结合HSV空间的水面图像特征水岸线检测[J]. 中国图象图形学报, 2018, 23(4): 526-533. doi: 10.11834/jig.170498

    PENG M Y, WANG J H, WEN X X, et al. Shoreline detection method by combining HSV spatial water image feature[J]. Journal of Image and Graphics, 2018, 23(4): 526-533. doi: 10.11834/jig.170498
    [11]
    KAEWTRAKULPONG P, BOWDEN R. An improved adaptive background mixture model for real-time tracking with shadow detection[M]//Video-Based Surveillance Systems. Boston: Springer, 2002.
    [12]
    ZIVKOVIC Z, HEIJDEN F V D. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780. doi: 10.1016/j.patrec.2005.11.005
    [13]
    SAGI Z. Background subtractor CNT[CP/OL]. [2024-03-03]. https://github.com/sagi-z/BackgroundSubtractorCNT.
    [14]
    韩思奇, 王蕾. 图像分割的阈值法综述[J]. 系统工程与电子技术, 2002, 24(6): 91-94. doi: 10.3321/j.issn:1001-506X.2002.06.027

    HAN S Q, WANG L. A survey of thresholding methods for image segmentation[J]. Systems Engineering and Electronics, 2002, 24(6): 91-94. doi: 10.3321/j.issn:1001-506X.2002.06.027
    [15]
    王嘉, 关夏威, 付少波, 等. 基于先验信息的光照鲁棒性水下视觉定位方法[J]. 舰船科学技术, 2024, 46(10): 98-101.

    WANG J, GUAN X W, FU S B, et al. A robust underwater visual positioning method for brightness based on prior information[J]. Ship Science and Technology, 2024, 46(10): 98-101.
    [16]
    OTSU N. A threshold selection method from Gray-Level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
    [17]
    ZACK G W, ROGERS W E, LATT S A. Automatic measurement of sister chromatid exchange frequency[J]. Journal of Histochemistry & Cytochemistry Official Journal of the Histochemistry Society, 1977, 25(7): 741-753.
    [18]
    FISHER R B. Change detection in color images[EB/OL]. [2024-02-21]. https://www.semanticscholar.org/paper/Change-Detection-in-Color-Images-Fisher/0314ed6d26f63deeec2bb251771c3c17d07818c1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article Views(102) PDF Downloads(25) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return