• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 1
Mar  2025
Turn off MathJax
Article Contents
MA Qi, NI Shifeng, GENG Hao, YANG Haibin. Investigation of Acoustic Target Strength of a Cylindrical Shell Partially Covered with Anechoic Coating[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 150-155. doi: 10.11993/j.issn.2096-3920.2024-0105
Citation: MA Qi, NI Shifeng, GENG Hao, YANG Haibin. Investigation of Acoustic Target Strength of a Cylindrical Shell Partially Covered with Anechoic Coating[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 150-155. doi: 10.11993/j.issn.2096-3920.2024-0105

Investigation of Acoustic Target Strength of a Cylindrical Shell Partially Covered with Anechoic Coating

doi: 10.11993/j.issn.2096-3920.2024-0105
  • Received Date: 2024-06-04
  • Accepted Date: 2024-08-06
  • Rev Recd Date: 2024-07-19
  • Available Online: 2025-01-22
  • The primary structural configuration of underwater equipment consists of cylindrical shells. To study the characteristics of the acoustic target strength(TS) of a cylindrical shell partially covered with anechoic coatings, an anechoic coating with an embedded transverse cylindrical cavity was selected for analysis. Based on the Kirchhoff-Helmholtz integral formula, a dimensionality reduction method for acoustic TS of a cylindrical shell partially covered with anechoic coating was established through two-dimensional cylindrical differential element approximation and axial integration with significantly reduced computational complexity. By using this method, the control pattern of the anechoic coating on the acoustic TS of the cylindrical shell was further analyzed. The results show that in the case of a partially coated shell, the acoustic TS can be significantly reduced due to effects such as the sound absorption by the anechoic coating, the coupling resonance between the coating and the shell, and the destructive interference of scattering waves from different regions. Furthermore, optimizing the coated area can enhance the control of acoustic TS, beyond just sound absorption, providing useful references for the engineering design and applications of anechoic coatings.

     

  • loading
  • [1]
    OBERST H. Technical aspects of sound[M]. Amsterdam: Elsevier, 1957: 287-327.
    [2]
    MEYER E, BRENDEL K, TAMM K. Pulsation oscillations of cavities in rubber[J]. Journal of the Acoustical Society of America, 1958, 30(12): 1116-1120. doi: 10.1121/1.1909475
    [3]
    GAUNAURD G C. One-dimensional model for acoustic absorption in a viscoelastic medium containing short cylindrical cavities[J]. Journal of the Acoustical Society of America, 1977, 62(2): 298-307. doi: 10.1121/1.381528
    [4]
    HLADKY-HENNION A, DECARPIGNY J. Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: application to Alberich anechoic coatings[J]. Journal of the Acoustical Society of America, 1991, 90(6): 3356-3367. doi: 10.1121/1.401395
    [5]
    IVANSSON S M. Numerical design of Alberich anechoic coatings with superellipsoidal cavities of mixed sizes[J]. The Journal of the Acoustical Society of America, 2008, 124(4): 1974-1984. doi: 10.1121/1.2967840
    [6]
    IVANSSON S M. Anechoic coatings obtained from two-and three-dimensional monopole resonance diffraction gratings[J]. The Journal of the Acoustical Society of America, 2012, 131(4): 2622-2637. doi: 10.1121/1.3689852
    [7]
    谭红波, 赵洪, 徐海亭. 有限元法分析空腔周期分布粘弹性层的声特性[J]. 声学学报, 2003, 28(3): 277-282. doi: 10.3321/j.issn:0371-0025.2003.03.015

    TAN H B, ZHAO H, XU H T. Sound characteristics of the viscoelastic layer containing periodic cavities by the finite element method[J]. Acta Acustica, 2003, 28(3): 277-282. doi: 10.3321/j.issn:0371-0025.2003.03.015
    [8]
    WEN J H, ZHAO H G, LV L M, et al. Effects of locally resonant modes on underwater sound absorption in viscoelastic materials[J]. The Journal of the Acoustical Society of America, 2011, 130: 1201-1208. doi: 10.1121/1.3621074
    [9]
    YANG H B, LI Y, ZHAO H G, et al. Acoustic anechoic layers with singly periodic array of scatterers: Computational methods, absorption mechanisms, and optimal design[J]. Chinese Physics B, 2014, 23(10): 104304. doi: 10.1088/1674-1056/23/10/104304
    [10]
    QU S, GAO N, TINEL A, et al. Underwater metamaterial absorber with impedance-matched composite[J]. Science Advances, 2022, 8(20): m4206. doi: 10.1126/sciadv.abm4206
    [11]
    DONG H, ZHAO S, OUDICH M, et al. Reflective metasurfaces with multiple elastic mode conversions for broadband underwater sound absorption[J]. Physical Review Applied, 2022, 17(4): 44013. doi: 10.1103/PhysRevApplied.17.044013
    [12]
    KE Y, ZHANG L, ZHAO X, et al. An equivalent method for predicting acoustic scattering of coated shell using identified viscoelastic parameters of anechoic coating[J]. Applied Acoustics, 2021, 179: 108071. doi: 10.1016/j.apacoust.2021.108071
    [13]
    ZAMPOLLI M, TESEI A, JENSEN F B, et al. A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects[J]. The Journal of the Acoustical Society of America, 2007, 122(3): 1472-1485. doi: 10.1121/1.2764471
    [14]
    ABAWI A T. Kirchhoff scattering from non-penetrable targets modeled as an assembly of triangular facets[J]. The Journal of the Acoustical Society of America, 2016, 140(3): 1878-1886. doi: 10.1121/1.4962735
    [15]
    汤渭霖, 范军, 马忠成. 水中目标声散射[M]. 北京: 科学出版社, 2018: 220-227.
    [16]
    加林, 陶猛. 敷设吸声覆盖层复杂目标的目标强度计算[J]. 噪声与振动控制, 2023, 43(6): 57-61.

    JIA L, TAO M. Calculation of target intensity for laying complex targets of sound absorbing overlay[J]. Noise and Vibration Control, 2023, 43(6): 57-61.
    [17]
    曹浩, 樊书宏, 周晶. 基于板块元法的鱼雷声散射特性分析[J]. 水下无人系统学报, 2022, 30(2): 184-189.

    CAO H, FAN S H, ZHOU J. Analysis of acoustic scattering characteristics of a torpedo based on planar elements method[J]. Journal of Unmanned Undersea Systems, 2022, 30(2): 184-189.
    [18]
    薛亚强, 彭子龙, 俞强, 等. 基于Kirchhoff近似与曲面三角形网格的水下目标声散射特性分析[J]. 兵工学报, 2023, 44(8): 2424-2431.

    XUE Y Q, PENG Z L, YU Q, et al. Analysis of acoustic scattering characteristics of underwater targets based on Kirchhoff approximation and curved triangular mesh[J]. Acta Armamentarii, 2023, 44(8): 2424-2431.
    [19]
    JUNGER M C, FEIT D. Sound, structures, and their interaction[M]. 2nd ed. Cambridge: The MIT Press, 1987: 82-83.
    [20]
    NORRIS A, VASUDEVAN N. Acoustic wave scattering from thin shell structures[J]. The Journal of the Acoustical Society of America, 1992, 92(6): 3320-3336. doi: 10.1121/1.404182
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(78) PDF Downloads(21) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return