• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
Effect of Hub-to-tip Ratio on Performance of High Speed Pump Jet Propulsor for Undersea Vehicle GAN Gongchang[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0091
Citation: Effect of Hub-to-tip Ratio on Performance of High Speed Pump Jet Propulsor for Undersea Vehicle GAN Gongchang[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0091

Effect of Hub-to-tip Ratio on Performance of High Speed Pump Jet Propulsor for Undersea Vehicle GAN Gongchang

doi: 10.11993/j.issn.2096-3920.2024-0091
  • Received Date: 2024-05-27
  • Accepted Date: 2024-08-27
  • Rev Recd Date: 2024-08-06
  • Available Online: 2024-12-17
  • In order to investigate the influence of hub-to-tip ratio on the high-speed pump jet propulsor of undersea vehicles, taking the impeller with specific speed of 1 920 as the research object, numerical calculation, performance result analysis and comparion, and experimental verification of three different hub-to-tip ratios of the high-speed pump jet propulsor of undersea vehicles were conducted. Using Fluent software, the Reynolds equation N-S equation and SST k-ω model are used to predict the head, efficiency and thrust of the impeller. The performance curves, cavitation performance data, and internal flow field conditions of impellers with different hub-to-tip ratios were obtained through numerical simulation calculations. The results show that, the pressure gradient on the blade surface from the blade tip to the shroud decreases, with the increase of the hub-to-tip ratio, the maximum static pressure on the blade decreases, the head and efficiency of the pump jet propulsor decrease, and the cavitation performance significantly declines, but it is better than that of the small hub-to-tip ratio in the cavitation state. The research findings can provide certain references for the optimization design of high-speed pump jet propulsor structures for undersea vehicle pump jet propellers.

     

  • loading
  • [1]
    张明宇, 王永生, 林瑞霖, 等. 泵喷推进器低噪声优化设计[J]. 华中科技大学学报(自然科学版), 2019, 47(3): 7-12.

    Zhang, Mingyu, Wang, Yongsheng, Lin, Ruilin, et al. Low-Noise Optimization Design of Pump Jet Thruster[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(3): 7-12.
    [2]
    张帅, 肖晶晶. 水下矢量推进器研究综述[J]. 舰船科学技术, 2019, 41(7): 5-9.

    Zhang, Shuai, Xiao, Jingjing. Review of Underwater Vector Propulsion System Research[J]. Ship Science and Technology, 2019, 41(7): 5-9.
    [3]
    刘业宝. 水下航行器泵喷推进器设计方法研究[D]. 哈尔滨工程大学, 2013.

    Liu, Yebao. Research on Design Method of Pump Jet Propulsor for Underwater Vehicles[D]. Harbin Engineering University, 2013.
    [4]
    成科, 陈启明, 崔宝玲, 等. 多级离心泵扬程预测及内部流场数值模拟[J]. 流体机械, 2021, 49(3): 60-67.

    Cheng, Ke, Chen, Qiming, Cui, Baoling, et al. Prediction of Head and Numerical Simulation of Internal Flow Field for Multi-Stage Centrifugal Pump[J]. Fluid Machinery, 2021, 49(3): 60-67.
    [5]
    常书平, 王永生, 丁江明, 等. 基于 CFD 的船舶喷水推进器优化设计[J]. 船舶力学, 2013, 17(4): 369-374.

    Chang, Shuping, Wang, Yongsheng, Ding, Jiangming, et al. Optimization Design of Ship Waterjet Propulsion Based on CFD[J]. Journal of Ship Mechanics, 2013, 17(4): 369-374.
    [6]
    Ivanell S. Hydrodynamic simulation of a torpedo with pumpjet propulsion system[D]. Royal Institute of Technology, Stockholm, Sweden, 2001.
    [7]
    Altosole M, Benvenuto G, Figari M, et al. Dimensionless numerical approaches for the performance prediction of marine waterjet propulsion units[J]. International Journal of Rotating Machinery, 2012, 1(2012): 321306.
    [8]
    郝宗睿, 李超, 任万龙, 等. 基于改进粒子群算法的喷水推进泵叶片优化设计[J]. 排灌机械工程学报, 2020, 38(6): 566-570.

    Hao, Zongrui, Li, Chao, Ren, Wanlong, et al. Blade Optimization Design of Waterjet Pump Based on Improved Particle Swarm Optimization Algorithm[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(6): 566-570.
    [9]
    Zangeneh M, Goto A. Turbodesign-1: next generation design software for pumps[J]. World Pumps, 2003(437): 32-6.
    [10]
    Zangeneh M. Advanced design software for pumps[J]. World Pumps, 2007(489): 28-31.
    [11]
    Zangeneh M, Daneshkhah K, Dacosta B. A multi-objective automatic optimization strategy for design of waterjet pumps[C]. RINA, Royal Institution of Naval Architects International Conference-Waterjet Propulsion 5-Papers. 2008: 27-32.
    [12]
    Bulten N W H, Verbeek R. Design of optimal inlet duct geometry based on vessel operational profile[C]. International Conference on Fast Sea Transportation, FAST 2003, Ischia, Italy, October 7-10. 2003, 1: 35-40.
    [13]
    Razaghian A H, Ebrahimi A, Zahedi F, et al. Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers[J]. Applied Ocean Research, 2021, 114: 102773. doi: 10.1016/j.apor.2021.102773
    [14]
    Ji X Q, Dong X Q, Yang C J. Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: a numerical study[J]. Applied Ocean Research, 2021, 113: 102723. doi: 10.1016/j.apor.2021.102723
    [15]
    李臣. 喷水推进轴流泵水力设计及性能仿真[D]. 大连海事大学, 2015.

    Li, Chen. Hydraulic Design and Performance Simulation of Waterjet Axial Flow Pump[D]. Dalian Maritime University, 2015.
    [16]
    Huang Q, Li H, Pan G, et al. Effects of duct parameter on pump-jet propulsor unsteady hydrodynamic performance[J]. Ocean Engineering, 2021, 221: 108509. doi: 10.1016/j.oceaneng.2020.108509
    [17]
    邓辉, 张志宏, 王克彬, 等. 跨临界航速船舶水压场数值模拟研究[J]. 船舶力学, 2020, 24(11): 1383-1392.

    Deng, Hui, Zhang, Zhihong, Wang, Kebin, et al. Numerical Simulation Study on Water Pressure Field of Ships at Transcritical Speed[J]. Journal of Ship Mechanics, 2020, 24(11): 1383-1392.
    [18]
    覃小瑞, 王名扬, 徐增丙, 林辉, 王志刚. 混流式喷水推进泵叶轮结构稳定性研究[J]. 机床与液压, 2022, 50(19): 179-184.

    Qin, Xiaorui, Wang, Mingyang, Xu, Zengbing, Lin, Hui, Wang, Zhigang. Research on Structural Stability of Mixed-Flow Waterjet Pump Impeller[J]. Machine Tool & Hydraulics, 2022, 50(19): 179-184.
    [19]
    Zhang X, Tang F, Liu C, et al. Numerical simulation of transient characteristics of start-up transition process of large vertical siphon axial flow pump station[J]. Frontiers in Energy Research, 2021, 9: 706975. doi: 10.3389/fenrg.2021.706975
    [20]
    刘厚林, 华旭辉, 吴贤芳, 等. 轮毂比对无轴泵喷推进器性能的影响[J]. 哈尔滨工程大学学报, 2022, 12: 1-8.

    Liu, Houlin, Hua, Xuhui, Wu, Xianfang, et al. The Impact of Hub-to-Tip Ratio on the Performance of Axial-Free Pump Jet Propulsor[J]. Journal of Harbin Engineering University, 2022, 12: 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article Views(6) PDF Downloads(1) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return