• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
GAN Gongchang. Effect of Hub-to-tip Ratio on Performance of High Speed Pump-jet Propulsor for Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1123-1130. doi: 10.11993/j.issn.2096-3920.2024-0091
Citation: GAN Gongchang. Effect of Hub-to-tip Ratio on Performance of High Speed Pump-jet Propulsor for Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1123-1130. doi: 10.11993/j.issn.2096-3920.2024-0091

Effect of Hub-to-tip Ratio on Performance of High Speed Pump-jet Propulsor for Undersea Vehicle

doi: 10.11993/j.issn.2096-3920.2024-0091
  • Received Date: 2024-05-27
  • Accepted Date: 2024-08-27
  • Rev Recd Date: 2024-08-06
  • Available Online: 2024-12-17
  • To investigate the influence of the hub-to-tip ratio on the high-speed pump-jet propulsors of undersea vehicles, this study took an impeller with specific speed of 1 920 as the research object and conducted numerical calculation, performance result analysis and comparison, and experimental verification of three different hub-to-tip ratios of a high-speed pump-jet propulsor for undersea vehicles. Using Fluent software, it adopted a Reynolds-averaged N-S equation and an shear stress transport k-ω model to predict the head, efficiency, and thrust of the impeller. The performance curves, cavitation performance data, and internal flow field conditions of the impeller under different hub-to-tip ratios were obtained through numerical simulation calculations. The results show that the pressure gradient on the blade surface from the blade tip to the rim decreases. With the increase in the hub-to-tip ratio, the maximum static pressure on the blade and the head and efficiency of the pump-jet propulsor all decrease, and the cavitation performance significantly declines. However, the cavitation state is superior to that at the small hub-to-tip ratio. The research findings can provide certain reference for the structure optimization design of high-speed pump-jet propulsors for undersea vehicles.

     

  • [1]
    张明宇, 王永生, 林瑞霖, 等. 泵喷推进器低噪声优化设计[J]. 华中科技大学学报(自然科学版), 2019, 47(3): 7-12.

    ZHANG M Y, WANG Y S, LIN R L, et al. Low-noise optimization design of pump jet thruster[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019, 47(3): 7-12.
    [2]
    张帅, 肖晶晶. 水下矢量推进器研究综述[J]. 舰船科学技术, 2019, 41(7): 5-9.

    ZHANG S, XIAO J J. Review of underwater vector propulsion system research[J]. Ship Science and Technology, 2019, 41(7): 5-9.
    [3]
    刘业宝. 水下航行器泵喷推进器设计方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
    [4]
    成科, 陈启明, 崔宝玲, 等. 多级离心泵扬程预测及内部流场数值模拟[J]. 流体机械, 2021, 49(3): 60-67.

    CHENG K, CHEN Q M, CUI B L, et al. Prediction of head and numerical simulation of internal flow field for multi-stage centrifugal pump[J]. Fluid Machinery, 2021, 49(3): 60-67.
    [5]
    常书平, 王永生, 丁江明, 等. 基于 CFD 的船舶喷水推进器优化设计[J]. 船舶力学, 2013, 17(4): 369-374.

    CHANG S P, WANG Y S, DING J M, et al. Optimization design of ship waterjet propulsion based on CFD[J]. Journal of Ship Mechanics, 2013, 17(4): 369-374.
    [6]
    Ivanell S. Hydrodynamic simulation of a torpedo with pumpjet propulsion system[D]. Stockholm, Sweden: Royal Institute of Technology, 2001.
    [7]
    Altosole M, Benvenuto G, Figari M, et al. Dimensionless numerical approaches for the performance prediction of marine waterjet propulsion units[J]. International Journal of Rotating Machinery, 2012, 2012: 321306.
    [8]
    郝宗睿, 李超, 任万龙, 等. 基于改进粒子群算法的喷水推进泵叶片优化设计[J]. 排灌机械工程学报, 2020, 38(6): 566-570.

    HAO Z R, LI C, REN W L, et al. Blade optimization design of waterjet pump based on improved particle swarm optimization algorithm[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(6): 566-570.
    [9]
    ZANGENEH M, GOTO A. Turbodesign-1: next generation design software for pumps[J]. World Pumps, 2003(437): 32-36.
    [10]
    ZANGENEH M. Advanced design software for pumps[J]. World Pumps, 2007(489): 28-31.
    [11]
    ZANGENEH M, DANESHKHAH K, DACOSTA B. A multi-objective automatic optimization strategy for design of waterjet pumps[C]//Royal Institution of Naval Architects International Conference-Waterjet Propulsion 5-Papers. [S.l.]: [s.n.], 2008: 27-32.
    [12]
    BULTEN N W H, VERBEEK R. Design of optimal inlet duct geometry based on vessel operational profile[C]//International Conference on Fast Sea Transportation. Ischia, Italy: FAST, 2003.
    [13]
    RAZAGHIAN A H, EBRAHIMI A, ZAHEDI F, et al. Investigating the effect of geometric parameters on hydrodynamic and hydro-acoustic performances of submerged propellers[J]. Applied Ocean Research, 2021, 114: 102773. doi: 10.1016/j.apor.2021.102773
    [14]
    JI X Q, DONG X Q, YANG C J. Attenuation of the tip-clearance flow in a pump-jet propulsor by thickening and raking the tips of rotor blades: A numerical study[J]. Applied Ocean Research, 2021, 113: 102723. doi: 10.1016/j.apor.2021.102723
    [15]
    李臣. 喷水推进轴流泵水力设计及性能仿真[D]. 大连: 大连海事大学, 2015.
    [16]
    HUANG Q, LI H, PAN G, et al. Effects of duct parameter on pump-jet propulsor unsteady hydrodynamic performance[J]. Ocean Engineering, 2021, 221: 108509. doi: 10.1016/j.oceaneng.2020.108509
    [17]
    邓辉, 张志宏, 王克彬, 等. 跨临界航速船舶水压场数值模拟研究[J]. 船舶力学, 2020, 24(11): 1383-1392.

    DENG H, ZHANG Z H, WANG K B, et al. Numerical simulation study on water pressure field of ships at transcritical speed[J]. Journal of Ship Mechanics, 2020, 24(11): 1383-1392.
    [18]
    覃小瑞, 王名扬, 徐增丙, 等. 混流式喷水推进泵叶轮结构稳定性研究[J]. 机床与液压, 2022, 50(19): 179-184.

    QIN X R, WANG M Y, XU Z B, et al. Research on structural stability of mixed-flow waterjet pump impeller[J]. Machine Tool & Hydraulics, 2022, 50(19): 179-184.
    [19]
    ZHANG X, TANG F, LIU C, et al. Numerical simulation of transient characteristics of start-up transition process of large vertical siphon axial flow pump station[J]. Frontiers in Energy Research, 2021, 9: 706975. doi: 10.3389/fenrg.2021.706975
    [20]
    刘厚林, 华旭辉, 吴贤芳, 等. 轮毂比对无轴泵喷推进器性能的影响[J]. 哈尔滨工程大学学报, 2022, 12: 1-8.

    LIU H L, HUA X H, WU X F, et al. The impact of hub-to-tip ratio on the performance of axial-free pump jet propulsor[J]. Journal of Harbin Engineering University, 2022, 12: 1-8.
  • Relative Articles

    [1]XIONG Lu, LI Jingshu, RAO Zhe, HUO Zhifan. A Review of Terrain Elevation Matching Algorithms for Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 1-14. doi: 10.11993/j.issn.2096-3920.2024-0152
    [2]XIANG Junbang, WANG Xiaoguang, KANG Huifeng, XUAN Jialin, YANG Liu. Simulation of Water Entry Jet and Cavitation Characteristics of Hollow Projectiles[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 482-488. doi: 10.11993/j.issn.2096-3920.2023-0163
    [3]GAO Jian, HE Yaozhen, CHEN Yimin, ZHANG Yuanxu, YANG Xubo, LI Yufeng, ZHANG Zhenchi. Review of Visual Control Technology for Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 282-294. doi: 10.11993/j.issn.2096-3920.2023-0061
    [4]CHU Yue, SHI Zelin, WANG Mengjun, LIU Pingan. Finite-Time Sliding Mode Control for Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2023, 31(6): 878-884. doi: 10.11993/j.issn.2096-3920.2022-0060
    [5]LIU Yuan-qing, ZHANG Chen-xing, CHEN Xiang-yan, WANG Fan-yu. Simulation of Gap Flow of an Underwater Vehicle-Launch Tube[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 450-456. doi: 10.11993/j.issn.2096-3920.202109013
    [6]SUN Yuan, WANG Guang-ping, LI Chun-yu, WANG Xue-feng. Research on the Establishment Time of Underwater Inflatable Positive Buoyancy for Vehicle[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 514-518. doi: 10.11993/j.issn.2096-3920.202106010
    [7]LI Hou-quan, FENG Xiao-tao, ZHANG Xiao-fang, ZHAO Zhi-bo. Research on Abnormal Ultra-shallow Shutdown of Undersea Vehicles[J]. Journal of Unmanned Undersea Systems, 2022, 30(4): 523-527. doi: 10.11993/j.issn.2096-3920.202112019
    [8]LIU Feng, LIANG Xu, MIAO Yi-rani, TU Chao-hua, ZHAO Yan-kai. Parameterized Analysis and Optimization of Undersea Vehicle Resistance[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 526-531. doi: 10.11993/j.issn.2096-3920.2020.05.008
    [9]SUN Ming-yu, DONG Xiao-qian, YANG Chen-jun. Numerical Simulation and Analysis of Hydrodynamic Scale Effect of Pump-jet Propulsor[J]. Journal of Unmanned Undersea Systems, 2020, 28(5): 538-546. doi: 10.11993/j.issn.2096-3920.2020.05.010
    [10]LI Jie, MA Xu-kun. A Safety Strategy Design Method of Autonomous Navigation for Long-Range Delivered Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 463-468. doi: 10.11993/j.issn.2096-3920.2019.04.016
    [11]DUAN Yong, GUO Jun, ZHOU Ling-bo. Application of Vibration Isolation Technology to Vibration Control of Undersea Vehicle Propulsion Shafting[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 070-77. doi: 10.11993/j.issn.2096-3920.2018.01.012
    [12]LUO Xiao-qiang, WANG Hao, HOU Fa-lin. Comprehensive Assessment Method for Navigation Mission Reliability of Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 348-351. doi: 10.11993/j.issn.2096-3920.2018.04.012
    [13]LIU Cheng-yong, LUO Kai, GUO Qing. Performance Prediction of Contra-rotating Propellers for Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2017, 25(新刊5): 437-442. doi: 10.11993/j.issn.2096-3920.2017.05.007
    [14]MO Hui-xia, DANG Jian-jun, LUO Kai, HUANG Chuang, HUANG Biao. Numerical Calculation of Additional Mass for Undersea Vehicle[J]. Journal of Unmanned Undersea Systems, 2017, 25(新刊3): 250-255. doi: 10.11993/j.issn.2096-3920.2017.03.006
    [15]LI Fu-yuan, DANG Jian-jun. Hydrodynamic Characteristics of Conical Cavitator with Fins[J]. Journal of Unmanned Undersea Systems, 2016, 24(3): 172-176. doi: 10.11993/j.issn.1673-1948.2016.03.003
    [16]LU Ding-ding, FU Jian. Effect of Pump-jet Propulsor Duct on Sound Field of Rotor[J]. Journal of Unmanned Undersea Systems, 2016, 24(6): 407-411. doi: 10.11993/j.issn.1673-1948.2016.06.002
    [17]GUO Guang-hua, HU Yu-li, HE Fa-yao. Analysis on Reliability of Battery Pack for Underwater Vehicle[J]. Journal of Unmanned Undersea Systems, 2015, 23(3): 214-217. doi: 10.11993/j.issn.1673-1948.2015.03.010
    [18]WU Bi, WANG Xin, WANG Hua-kui. Design and Simulation of Test Route for Underwater Vehicle[J]. Journal of Unmanned Undersea Systems, 2010, 18(6): 445-448. doi: 10.11993/j.issn.1673-1948.2010.06.011
    [19]LUO Kai, DANG Jian-jun, WANG Yu-cai, ZHANG Yu-wen. Course Control of Superspeed Underwater Vehicle[J]. Journal of Unmanned Undersea Systems, 2009, 17(6): 054-57. doi: 10.11993/j.issn.1673-1948.2009.06.012
    [20]SONG Bao-wei, MA Ji, HU Hai-bao, LU Xiang, LIU Zhan-yi. Numerical Analysis of Flow Noise for Underwater Vehicle[J]. Journal of Unmanned Undersea Systems, 2009, 17(2): 005-10. doi: 10.11993/j.issn.1673-1948.2009.02.002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.5 %FULLTEXT: 21.5 %META: 60.7 %META: 60.7 %PDF: 17.8 %PDF: 17.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.6 %其他: 5.6 %China: 0.9 %China: 0.9 %Kao-sung: 0.9 %Kao-sung: 0.9 %上海: 2.8 %上海: 2.8 %六安: 0.9 %六安: 0.9 %北京: 3.7 %北京: 3.7 %十堰: 1.9 %十堰: 1.9 %哥伦布: 0.9 %哥伦布: 0.9 %山景城: 3.7 %山景城: 3.7 %常德: 0.9 %常德: 0.9 %广元: 0.9 %广元: 0.9 %广州: 3.7 %广州: 3.7 %张家口: 9.3 %张家口: 9.3 %杭州: 0.9 %杭州: 0.9 %武汉: 3.7 %武汉: 3.7 %淄博: 0.9 %淄博: 0.9 %温州: 0.9 %温州: 0.9 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.9 %石家庄: 0.9 %福州: 1.9 %福州: 1.9 %秦皇岛: 0.9 %秦皇岛: 0.9 %绵阳: 0.9 %绵阳: 0.9 %芒廷维尤: 16.8 %芒廷维尤: 16.8 %西宁: 10.3 %西宁: 10.3 %西安: 13.1 %西安: 13.1 %诺沃克: 3.7 %诺沃克: 3.7 %贵阳: 0.9 %贵阳: 0.9 %重庆: 3.7 %重庆: 3.7 %镇江: 1.9 %镇江: 1.9 %黄冈: 0.9 %黄冈: 0.9 %其他ChinaKao-sung上海六安北京十堰哥伦布山景城常德广元广州张家口杭州武汉淄博温州漯河石家庄福州秦皇岛绵阳芒廷维尤西宁西安诺沃克贵阳重庆镇江黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article Views(64) PDF Downloads(19) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return