• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
Volume 32 Issue 4
Aug  2024
Turn off MathJax
Article Contents
WANG Yongfeng, LIN Jinmei, DONG Lei, QIU Sai. Multi-Base Active Location Based on Cross-Domain Information Synchronization[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 713-717. doi: 10.11993/j.issn.2096-3920.2024-0085
Citation: WANG Yongfeng, LIN Jinmei, DONG Lei, QIU Sai. Multi-Base Active Location Based on Cross-Domain Information Synchronization[J]. Journal of Unmanned Undersea Systems, 2024, 32(4): 713-717. doi: 10.11993/j.issn.2096-3920.2024-0085

Multi-Base Active Location Based on Cross-Domain Information Synchronization

doi: 10.11993/j.issn.2096-3920.2024-0085
  • Received Date: 2024-05-23
  • Accepted Date: 2024-08-06
  • Rev Recd Date: 2024-07-19
  • Available Online: 2024-08-07
  • The information synchronization problem is one of the difficulties in the application of multi-base active sonar systems. In existing research and application, it is usually assumed that the receiving station knows the pulse transmission time of the transmitting station, the spatial location information of the sound source, and the transmission waveform parameters, thus can calculate the echo sound path, locate the target, and obtain the time processing gain of the echo signal. However, these conditions may not be met in practice. The obstacles and possible solutions for information synchronization in different application scenarios were first discussed. A multi-base active location method based on cross-domain information synchronization was then proposed for the situation where there is an external communication link between the receiving and transmitting stations, but the link is unreliable, or the delay is uncertain. This method used the basic physical law that the direct wave arrives at the receiving station before the target echo. The receiving station first obtained the position and waveform parameter information of the transmitting station through the external link and then estimated the transmission time according to the direct wave arrival time and the distance between stations. It had high engineering feasibility. Finally, the factors affecting the accuracy of time and position synchronization and the target positioning error caused by the time and space information error were discussed and simulated.

     

  • loading
  • [1]
    KUMAR S, CHINTHAGINJALA R, ANBAZHAGAN R, et al. Submarine acoustic target strength modeling at high-frequency asymptotic scattering[J]. IEEE Access, 2024(12): 4859-4870 .
    [2]
    ZHAO S, LI L R, ZHANG X H, et al. Simulation of backscatter signal of submarine target based on spatial distribution characteristics of target intensity[C]//2021 OES China Ocean Acoustics(COA), Harbin, China: COA, 2021: 234-239.
    [3]
    罗光成, 张丹, 杨日杰. 潜艇规避运动模型建模与仿真[J]. 舰船电子工程, 2011, 31(9): 97-99. doi: 10.3969/j.issn.1627-9730.2011.09.028

    LUO G C, ZHANG D, YANG R J. Modeling and simulation of the submarine evade movement[J]. Ship Electronic Engineering, 2011, 31(9): 97-99. doi: 10.3969/j.issn.1627-9730.2011.09.028
    [4]
    朱埜. 主动声呐检测信息原理(下册): 主动声呐信道特性和系统优化原理[M]. 北京: 科学出版社, 2014.
    [5]
    张小凤. 双/多基地声呐定位及目标特性研究[D]. 西安: 西北工业大学, 2003.
    [6]
    KIM K, PARK S J, LEE K, et al. Submarine bistatic target strength analysis based on bistatic-to-monostatic conversion[J]. The Journal of the Acoustical Society of Korea, 2024, 43(1): 138-144.
    [7]
    邹吉武. 多基地声呐关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [8]
    鞠建波, 祝超, 胡胜林. 反潜巡逻机应召布放多基地声呐拦截阵搜潜效能研究[J]. 指挥控制与仿真, 2017, 39(3): 55-59. doi: 10.3969/j.issn.1673-3819.2017.03.012

    JU J B, ZHU C, HU S L. Efficiency research for on-callanti-submarine by anti-submarine patrolaircraft droppinginterception of multistatic sonar arra[J]. Command Control & Simulation, 2017, 39(3): 55-59. doi: 10.3969/j.issn.1673-3819.2017.03.012
    [9]
    张浩宇, 韩一娜, 赵伟康, 等. 多基地声呐融合探测关键技术研究[J]. 水下无人系统学报, 2018, 26(5): 456-464.

    ZHANG H Y, HAN Y N, ZHAO W K, et al. Key technologies of multistatic sonar fusion detection[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 456-464.
    [10]
    许乔, 张元凯, 蔡惠智. 基于IEEE 1588的多基地声呐湿端时钟同步技术研究[J]. 计算机测量与控制, 2014, 22(7): 2223-2225. doi: 10.3969/j.issn.1671-4598.2014.07.068

    XU Q, ZHANG Y K, CAI H Z. Research on clock synchronization of underwater part of multistatic sonarbased on ieee1588[J]. Computer Measurement & Control, 2014, 22(7): 2223-2225. doi: 10.3969/j.issn.1671-4598.2014.07.068
    [11]
    芦俊. 一种浮标位置修正算法[J]. 舰船电子工程, 2021, 41(5): 143-145. doi: 10.3969/j.issn.1672-9730.2021.05.033

    LU J. A buoy position correction algorithm[J]. Ship Electronic Engineering, 2021, 41(5): 143-145. doi: 10.3969/j.issn.1672-9730.2021.05.033
    [12]
    GWAK S Y. Target localization for difar sonobuoy compensated bearing estimation and sonobuoy position error[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2020, 21(2): 221-228.
    [13]
    LASASSMEH S M, CONRAD J M. Time synchronization in wireless sensor networks: A survey[C]//IEEE SoutheastCon 2010 (SoutheastCon), Concord, NC, USA: IEEE, 2010: 242-245
    [14]
    SONG H B, WEN G J, LIANG Y Y, et al. Target localization and clock refinement in distributed MIMO radar systems with time synchronization errors[J]. IEEE Transactions on Signal Processing, 2021, 69: 3088-3103. doi: 10.1109/TSP.2021.3081038
    [15]
    ZHANG T W, YAN L, HAN G J, et al. Fast and accurate underwater acoustic horizontal ranging algorithm for an arbitrary sound-speed profile in the deep sea[J]. IEEE Internet of Things Journal, 2021, 9(1): 755-769.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article Views(50) PDF Downloads(15) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return