Citation: | XU Jiangpeng, WANG Junlei, TANG Yi. Omnidirectional Motion Trajectory Tracking Control Method for AUVs[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1018-1028. doi: 10.11993/j.issn.2096-3920.2024-0084 |
[1] |
叶梦佳, 王宇轩, 王赟, 等. AUV平面直线航迹跟踪控制算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2127-2134. doi: 10.3785/j.issn.1008-973X.2022.11.003
|
[2] |
PENG Z, WANG J, HAN Q L. Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization[J]. Transactions on Industrial Electronics, 2019, 66(11): 8724-8732. doi: 10.1109/TIE.2018.2885726
|
[3] |
李曾妮. 移动对接过程中的欠驱动AUV路径规划方法研究[D]. 杭州: 浙江大学, 2023.
|
[4] |
程相勤. 基于滑模理论的欠驱动UUV空间曲线路径跟随控制[D]. 哈尔滨: 哈尔滨工程大学, 2011.
|
[5] |
谢天奇, 李晔, 姜言清, 等. 欠驱动自主水下航行器移动式回收控制及视景仿真[J]. 哈尔滨工程大学学报, 2023, 44(9): 1501-1509. doi: 10.11990/jheu.202112022
|
[6] |
刘承蔚. 欠驱动UUV有限时间路径跟踪控制方法研究[D]. 大连: 大连海事大学, 2023.
|
[7] |
WANG Z, WANG Y, JIANG S, et al. Three-dimensional trajectory tracking control of an underactuated AUV[C]// 2017 29th Chinese Control and Decision Conference. Chongqing, China: IEEE, 2017: 525-530.
|
[8] |
Guo Q, Li Y, Liu H, et al. An underactuated AUV tracking algorithm based on backstepping adaptive sliding mode control[C]//2020 Chinese Automation Congress. Shanghai, China: IEEE, 2020: 3765-3770.
|
[9] |
NOGUCHI Y, MAKI T. Tracking omnidirectional surfaces using a low-cost autonomous underwater vehicle[J]. Journal of Oceanic Engineering, 2021, 46(1): 11-23. doi: 10.1109/JOE.2020.2972046
|
[10] |
HESHMATI-ALAMDARI S, NIKOU A, DIMAROGONAS D V. Robust trajectory tracking control for underactuated autonomous underwater vehicles in uncertain environments[J]. Transactions on Automation Science and Engineering, 2021, 18(3): 1288-1301. doi: 10.1109/TASE.2020.3001183
|
[11] |
SONG Y S, ARSHAD M R. Tracking control design for autonomous underwater vehicle using robust filter approach[C]//2016 IEEE/OES Autonomous Underwater Vehicles. Tokyo, Japan: IEEE, 2016: 374-380.
|
[12] |
KIM Y S, LEE J, PARK S K, et al. Path tracking control for underactuated AUVs based on resolved motion acceleration control[C]//2009 4th International Conference on Autonomous Robots and Agents. Wellington, New Zealand: IEEE, 2009: 342-346.
|
[13] |
武建国, 任志刚, 吕日恒. 模块化自主水下机器人开发与应用[J]. 海洋信息技术与应用, 2022, 37(1): 10-20. doi: 10.3969/j.issn.1005-1724.2022.01.002
|
[14] |
崔峰, 林平. 基于模块化AUV的控制系统研究[J]. 机电工程技术, 2019, 48(2): 67-68.
|
[15] |
TAYLOR M, WILBY A. Design considerations and operational advantages of a modular AUV with synthetic aperture sonar[C]//Oceans’11 MTS/IEEE KONA. Waikoloa, USA: IEEE, 2011: 1-6.
|
[16] |
刘隽, 文永鹏, 孙翔, 等. AUV模块化对于操纵性的影响分析[J]. 舰船科学技术, 2023, 45(10): 78-84. doi: 10.3404/j.issn.1672-7649.2023.10.016
|
[17] |
王晓伟. 欠驱动AUV运动控制和路径规划研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
|
[18] |
卢有旺, 夏英凯, 徐国华, 等. 面向UUV对接的视觉引导三维轨迹跟踪控制研究[J]. 中国舰船研究, 2024, 19(1): 290-304.
|
[19] |
YANG X, YAN J, HUA C, et al. Trajectory tracking control of autonomous underwater vehicle with unknown parameters and external disturbances[J]. Transactions on Systems, Man, and Cybernetics: Systems, 2021(51): 1054-1063.
|
[20] |
NAG A, PATEL S S, AKBAR S A. Fuzzy logic based depth control of an autonomous underwater vehicle[C]//2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing. Kottayam, India: IEEE, 2013: 117-123.
|
[21] |
李建朋. 水下机器人浮力调节系统及其深度控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
|
[22] |
王伟. 微小型AUV浮力调节系统设计及定深控制研究[D]. 天津: 河北工业大学, 2018.
|
[23] |
李长龙, 刘伟, 周邵萍. 基于Mamdani模糊推理的槽罐车运输安全评价[J]. 华东理工大学学报(自然科学版), 2017, 43(4): 591-596.
LI C L, LIU W, ZHOU S P. Transportation safety assessment of tank vehicle based on Mamdani fuzzy inference[J]. Journal of East China University of Science and Technology, 2017, 43(4): 591-596.
|
[24] |
蔡建银, 王志刚, 郭宇飞, 等. 基于RBF神经网络的四旋翼磨抛机器人力/位混合控制[J]. 武汉科技大学学报, 2023, 46(6): 465-471.
|
[25] |
YE L, HONGDA G, HAO G, et al. The improved adaptive hybrid fuzzy control of AUV horizontal motion[C]//2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing. Chengdu, China: IEEE, 2016: 408-414.
|