• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
YUE Chenghai, XU Huixi, LÜ Fengtian, SHAO Gang, ZHU Baotong, YIN Zhongxun. Underwater image enhancement method based on light compensation and pyramid fusion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0082
Citation: YUE Chenghai, XU Huixi, LÜ Fengtian, SHAO Gang, ZHU Baotong, YIN Zhongxun. Underwater image enhancement method based on light compensation and pyramid fusion[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0082

Underwater image enhancement method based on light compensation and pyramid fusion

doi: 10.11993/j.issn.2096-3920.2024-0082
  • Received Date: 2024-05-20
  • Accepted Date: 2024-07-02
  • Rev Recd Date: 2024-07-01
  • Available Online: 2025-01-16
  • The existing enhancement methods based on deep learning and underwater imaging models still have insufficient adaptability due to the problems of color deviation, scattering blur, and uneven brightness in underwater optical imaging. In response to the above issues, this article proposes a single underwater image enhancement method that combines lighting compensation and pyramid detail fusion. Firstly, the global illumination and color channel characteristics are combined to estimate and compensate lighting intensity at pixel level, achieving intensity correction for each color channel. Then, Gaussian blur is used to estimate the scattered components of the image and multi-scale gaussian filter residual method is used to remove scattering. Finally, a multi image pyramid detail fusion brightness equalization method that combines edge enhanced image, adaptive Gamma corrected image, and brightness balanced image is proposed, which effectively preserves image detail information while solving the problem of uneven brightness in the image. Subjective evaluation and objective analysis have demonstrated the effectiveness of the method proposed in this paper.

     

  • loading
  • [1]
    ZHANG M, PENG J. Underwater image restoration based on a new underwater image formation model[J]. IEEE Access, 2018, 6: 58634-58644. doi: 10.1109/ACCESS.2018.2875344
    [2]
    LEE H S, MOON S W, EOM I K. Underwater image enhancement using successive color correction and superpixel dark channel prior[J]. Symmetry, 2020, 12(8): 1220. doi: 10.3390/sym12081220
    [3]
    李玉鑫, 梁天全, 于会山, 等. 融合暗通道与Retinex算法的水下图像复原研究[J]. 计算机仿真, 2024, 41(3): 162-167, 172. doi: 10.3969/j.issn.1006-9348.2024.03.031

    LI Y X, LIANG T Q, YU H S, et al. research on underwater image restoration combining dark channel and Retinex algorithm[J]. Computer Simulation, 2024, 41(3): 162-167, 172. doi: 10.3969/j.issn.1006-9348.2024.03.031
    [4]
    ZHUANG P X, WU J M, PORIKLI F, et al. Underwater image enhancement with hyper-laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455. doi: 10.1109/TIP.2022.3196546
    [5]
    ZHANG W, ZHUANG P, SUN H H, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement[J]. IEEE Transactions on Image Processing, 2022, 31: 3997-4010. doi: 10.1109/TIP.2022.3177129
    [6]
    ZHANG W D, ZHOU L, ZHUANG P X, et al. Underwater image enhancement via weighted wavelet visual perception fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2469-2483. doi: 10.1109/TCSVT.2023.3299314
    [7]
    张微微, 祝开艳. 基于图像融合的低光照水下图像增强[J]. 计算技术与自动化, 2023, 42(04): 85-92.

    ZHANG W W, ZHU K Y. Low-light underwater image enhancement based on image fusion [J]. Computing technology and automation, 2023, 42 (04): 85-92.
    [8]
    唐军, 秦艳霞, 林玲, 等. 多尺度融合与细节突显的水下视觉图像增强算法[J/OL]. 机械科学与技术, 1-8[2024-05-04].https://doi.org/10.13433/j.cnki.1003-8728.20240044.

    TANG J, QIN Y X, LIN L, et al.Underwater visual image enhancement algorithm based on multi-scale fusion and detail highlighting [J/OL]. Mechanical science and technology, 1-8. [2024-05-04].https://doi.org/10.13433/j.cnki.1003-8728.20240044.
    [9]
    张薇, 郭继昌. 基于白平衡和相对全变分的低照度水下图像增强[J]. 激光与光电子学进展, 2020, 57(12): 213-220.

    ZHANG W, GUO J C. Low-illumination underwater image enhancement based on white balance and relative total variation [J]. Progress in laser and optoelectronics, 2020, 57 (12): 213-220.
    [10]
    王悦, 范慧杰, 刘世本, 等. 基于多尺度注意力和对比学习的水下图像增强[J]. 激光与光电子学进展, 2024, 61(04): 559-567.

    WANG Y, FAN H J, LIU S B, etal. Underwater image enhancement based on multi-scale attention and contrast learning [J]. Progress in laser and optoelectronics, 2024, 61 (4): 559-567.
    [11]
    陈鑫, 钱旭, 周佳加, 等. 基于水下场景先验的水下图像增强方法研究[J]. 应用科技, 2024, 51(02): 56-65.

    CHEN X, QIAN X, ZHOU J J, et al. Research on underwater image enhancement method based on underwater scene prior[J]. Application Technology, 2024, 51 (02): 56-65.
    [12]
    ZHANG T, LI Y, TAKAHASHI S. Underwater image enhancement using improved generative adversarial network[J]. Concurrency and Computation Practice and Experience, 2020(3): 5841.
    [13]
    李微. 基于改进U-Net网络的水下图像增强[D]. 哈尔滨工程大学, 2021.
    [14]
    GUO YC, LI H Y, ZHUANG P X, et al.Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE Journal of Oceanic Engineering, 2020, 43(3): 862-870.
    [15]
    FU X Y, C X Y. Underwater image enhancement with global-local networks and compressed-histogram equalization[J]. Signal Processing-Image Communication, 2020, 86: 115892.
    [16]
    Naik A, Swarnakar A, Mittal K. Shallow-UWnet: compressed model for underwater image enhancement[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(18): 15853-15854. doi: 10.1609/aaai.v35i18.17923
    [17]
    WEN J J, CUI J Q, ZHAO Z J, et al. Syreanet: A physically guided underwater image enhancement framework integrating synthetic and real images[C]//IEEE International Conference on Robotics and Automation(ICRA), London, England:IEEE, 2023: 5177-5183.
    [18]
    YING Z Q, LI G, REN Y R, et al. A new image contrast enhancement algorithm using exposure fusion framework[J].Computer Analysis of Images and Patterns, 2017(10425): 36-46.
    [19]
    FU X Y, ZHUANG P X, HUANG Y, et al. A retinex-based enhancing approach for single underwater image[C]//IEEE International Conference on Image Processing(ICIP), Paris, France:IEEE, 2014: 4572-4576.
    [20]
    DHIVYA R, PRAKASH R, MOHANRAJ M. Color balance and fusion for underwater image enhancement[J]. Digital Image Processing, 2019, 11: 25-29.
    [21]
    ZHANG W H, LI G, YING Z Q. A new underwater image enhancing method via color correction and illumination adjustment[C]//IEEE Visual Communications and Image Processing(VCIP), St. Petersburg, USA:IEEE, 2017: 1-4.
    [22]
    LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J].IEEE Transactions on Image Processing, 2020, 29: 4376-4389.
    [23]
    PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J].IEEE Journal of Oceanic Engineering, 2016, 41(3): 541-551.
    [24]
    YANG M, SOWMYA A. An underwater color image quality evaluation metric[J].IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(19) PDF Downloads(4) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return