• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
ZHU Zhongben, ZHANG Jiahao, XUE Yifan, QIN Hongde. Obstacle Avoidance Control of AUV Based on DVFH+ in Ocean Current Environment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0077
Citation: ZHU Zhongben, ZHANG Jiahao, XUE Yifan, QIN Hongde. Obstacle Avoidance Control of AUV Based on DVFH+ in Ocean Current Environment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0077

Obstacle Avoidance Control of AUV Based on DVFH+ in Ocean Current Environment

doi: 10.11993/j.issn.2096-3920.2024-0077
  • Received Date: 2024-05-09
  • Accepted Date: 2024-07-18
  • Rev Recd Date: 2024-07-14
  • Available Online: 2025-01-24
  • Aiming at the problem that the improved vector field histogram (VFH) algorithm VFH+ ignores dynamic performance of autonomous undersea vehicle (AUV) and the impact of ocean current environment, and is sensitive to threshold setting, dynamic-based VFH+ (DVFH+) is proposed in this paper. The dynamic parameters of AUV are used to limit the output of the expected heading, which solves the problem of the expected output hopping of the original algorithm and improves the tracking performance of AUV; considering the drift angle compensation in the real ocean current environment, the obstacle avoidance algorithm is optimized to improve its robustness and adaptability; according to the obstacle information, the threshold value can be adjusted adaptively, and the planning instructions can be calculated according to the environmental characteristics around AUV, so as to ensure the efficiency and safety of navigation. The REMUS 100 AUV model is used for simulation and the results show that DVFH+ proposed in this paper can provide a smoother and more feasible obstacle avoidance route, which is suitable for obstacle avoidance of AUV in complex environment, and effectively avoids the path detouring and planning failure caused by the unreasonable threshold setting of the original algorithm.

     

  • loading
  • [1]
    郭渊博, 李琦, 闵博旭, 等. 基于分布式模型预测控制的欠驱动AUV编队控制[J]. 水下无人系统学报, 2023, 31(3): 405-412. doi: 10.11993/j.issn.2096-3920.202204018

    GUO Y B, LI Q, MIN B X, et al. Formation control of an underactuated autonomous undersea vehicle based on distributed model predictive control[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 405-412. doi: 10.11993/j.issn.2096-3920.202204018
    [2]
    姚金艺, 曾庆军, 周启润, 等. 全驱动AUV系统路径跟踪设计与实现[J]. 水下无人系统学报, 2019, 27(4): 452-458.

    YAO J Y, ZENG Q J, ZHOU Q R, et al. Design and implementation of a path tracking system for fully actuated AUV[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 452-458.
    [3]
    KRIEG M, MOHSENI K. Dynamic modeling and control of biologically inspired vortex ring thrusters for underwater robot locomotion[J]. IEEE Transactions on Robotics, 2010, 26(3): 542-554. doi: 10.1109/TRO.2010.2046069
    [4]
    张荣敏, 陈原, 高军. 无鳍舵矢量推进水下机器人纵向稳定性研究[J]. 哈尔滨工程大学学报, 2017, 38(1): 133-139+152.

    ZHANG R M, CHEN Y, GAO J. Longitudinal handling stability of vectored thrust underwater vehicle without fin and rudder[J]. Journal of Harbin Engineering University, 2017, 38(1): 133-139+152.
    [5]
    JOUNG T H, LEE J H, NHO I S, et al. A study on the design and manufacturing of a deep-sea unmanned underwater vehicle based on structural reliability analysis[J]. Ships and Offshore Structures, 2009, 4(1): 19-29. doi: 10.1080/17445300802315367
    [6]
    郭银景, 鲍建康, 刘琦, 等. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001

    GUO Y J, BAO J K, LIU Q, et al. Research progress of real-time obstacle avoidance algorithms for unmanned undersea vehicle: a review[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001
    [7]
    ZENG Z, LIAN L, SAMMUT K, et al. A survey on path planning for persistent autonomy of autonomous underwater vehicles[J]. Ocean Engineering, 2015, 110: 303-313. doi: 10.1016/j.oceaneng.2015.10.007
    [8]
    章飞, 胡春磊. 基于滚动速度障碍法的AUV动态避障路径规划[J]. 水下无人系统学报, 2021, 29(1): 30-38.

    ZHANG F, HU C L. Research on AUV dynamic obstacle avoidance path planning based on the rolling speed obstacle method[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 30-38.
    [9]
    MCMAHON J, PLAKU E. Mission and motion planning for autonomous underwater vehicles operating in spatially and temporally complex environments[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 1-20.
    [10]
    BORENSTEIN J, KOREN Y. The vector field histogram-fast obstacle avoidance for mobile robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3): 278-288. doi: 10.1109/70.88137
    [11]
    ULRICH I, BORENSTEIN J. VFH+: reliable obstacle avoidance for fast mobile robots[C]//Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat No98CH36146). Leuven, Belgium: IEEE, 1998: 1572-1577.
    [12]
    徐茂竹, 李弘, 李亚光, 等. 单目视觉引导下的无人艇局部避障方法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(4): 732-741.

    XU M Z, LI H, LI Y G, et al. Local obstacle avoidance for unmanned surface vehicle via monocular vision[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(4): 732-741.
    [13]
    PAPPAS P, CHIOU M, EPSIMOS G-T, et al. VFH plus based shared control for remotely operated mobile robots[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Abu Dhabi, United Arab Emirates: IEEE, 2020: 366-373.
    [14]
    SARY I P, NUGRAHA Y P, MEGAYANTI M, et al. Design of obstacle avoidance system on hexacopter using vector field histogram-plus[C]//8th IEEE International Conference on System Engineering and Technology (ICSET). Bandung, Indonesia: IEEE, 2018: 18-23.
    [15]
    娄虎, 赵泽钰, 阮文涛, 等. 基于自调节VFH+的水面无人艇雷达避障控制研究[J]. 机械制造与自动化, 2021, 50(3): 179-183.

    LOU H, ZHAO Z Y, YUAN W T, et al. Research on obstacle avoidance control of lidar for USV based on self-adjusting VFH+[J]. Machine Building & Automation, 2021, 50(3): 179-183.
    [16]
    陈浩华, 赵红, 王宁, 等. 复杂扰动下水下机器人的轨迹精确跟踪控制[J]. 中国舰船研究, 2022, 17(2): 98-108.

    CHEN H H, ZHAO H, WANG N, et al. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98-108.
    [17]
    李亚鑫, 刘里宵, 王宇. 欠驱动水下机器人的最优等效补偿轨迹跟踪控制[J]. 控制与决策, 2024, 39(9): 2923-2931.

    LI Y X, LIU L X, WANG Y. Optimal equivalent compensation trajectory tracking control for underactuated underwater robots[J]. Control and Decision, 2024, 39(9): 2923-2931.
    [18]
    YUAN C, SHUAI C, FANG Y, et al. A novel real-time obstacle avoidance method in guidance layer for AUVs' path following[J]. IEEE Transactions on Vehicular Technology, 2023, 73(2): 1845-1856.
    [19]
    FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York: John Wiley and Sons, 2011.
    [20]
    REIS M F, JAIN R P, AGUIAR A P, et al. Robust moving path following control for robotic vehicles: theory and experiments[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3192-3199. doi: 10.1109/LRA.2019.2925733
    [21]
    DIAZ D, MARIN L. VFH plus D: An improvement on the VFH plus algorithm for dynamic obstacle avoidance and local planning[C]//21st IFAC World Congress on Automatic Control-Meeting Societal Challenges. Berlin, Germany: Elsevier, 2020: 9590-9595.
    [22]
    刘淑霞, 李立刚, 金久才, 等. 基于漂角估计的无人船局部动态避障方法[J]. 电光与控制, 2023, 30(1): 103-108+119. doi: 10.3969/j.issn.1671-637X.2023.01.018

    LIU S X, LI L G, JIN J C, et al. Local dynamic avoidance method of USV with drift angle estimation[J]. Electronics Optics & Control, 2023, 30(1): 103-108+119. doi: 10.3969/j.issn.1671-637X.2023.01.018
    [23]
    韩鹏, 刘志林, 周泽才, 等. 基于LOS法的自航模航迹跟踪控制算法实现[J]. 应用科技, 2018, 45(3): 66-70.

    HAN P, LIU Z L, ZHOU Z C, et al. Path tracking control algorithm based on LOS method for surface self-propulsion vessel[J]. Applied Science and Technology, 2018, 45(3): 66-70.
    [24]
    PEREZ T, FOSSEN T I. A matlab toolbox for parametric identification of radiation-force models of ships and offshore structures[J]. Modeling Identification and Control, 2009, 30(1): 1-15. doi: 10.4173/mic.2009.1.1
    [25]
    WANG N, SU S F. Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2021, 29(2): 794-803. doi: 10.1109/TCST.2019.2955657
    [26]
    SHI L, ZHENG R, ZHANG S, et al. Cooperative estimation to reconstruct the parametric flow filed using multiple AUVs[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article Views(44) PDF Downloads(10) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return