Citation: | ZHU Zhongben, ZHANG Jiahao, XUE Yifan, QIN Hongde. Obstacle Avoidance Control of AUV Based on DVFH+ in Ocean Current Environment[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0077 |
[1] |
郭渊博, 李琦, 闵博旭, 等. 基于分布式模型预测控制的欠驱动AUV编队控制[J]. 水下无人系统学报, 2023, 31(3): 405-412. doi: 10.11993/j.issn.2096-3920.202204018
GUO Y B, LI Q, MIN B X, et al. Formation control of an underactuated autonomous undersea vehicle based on distributed model predictive control[J]. Journal of Unmanned Undersea Systems, 2023, 31(3): 405-412. doi: 10.11993/j.issn.2096-3920.202204018
|
[2] |
姚金艺, 曾庆军, 周启润, 等. 全驱动AUV系统路径跟踪设计与实现[J]. 水下无人系统学报, 2019, 27(4): 452-458.
YAO J Y, ZENG Q J, ZHOU Q R, et al. Design and implementation of a path tracking system for fully actuated AUV[J]. Journal of Unmanned Undersea Systems, 2019, 27(4): 452-458.
|
[3] |
KRIEG M, MOHSENI K. Dynamic modeling and control of biologically inspired vortex ring thrusters for underwater robot locomotion[J]. IEEE Transactions on Robotics, 2010, 26(3): 542-554. doi: 10.1109/TRO.2010.2046069
|
[4] |
张荣敏, 陈原, 高军. 无鳍舵矢量推进水下机器人纵向稳定性研究[J]. 哈尔滨工程大学学报, 2017, 38(1): 133-139+152.
ZHANG R M, CHEN Y, GAO J. Longitudinal handling stability of vectored thrust underwater vehicle without fin and rudder[J]. Journal of Harbin Engineering University, 2017, 38(1): 133-139+152.
|
[5] |
JOUNG T H, LEE J H, NHO I S, et al. A study on the design and manufacturing of a deep-sea unmanned underwater vehicle based on structural reliability analysis[J]. Ships and Offshore Structures, 2009, 4(1): 19-29. doi: 10.1080/17445300802315367
|
[6] |
郭银景, 鲍建康, 刘琦, 等. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001
GUO Y J, BAO J K, LIU Q, et al. Research progress of real-time obstacle avoidance algorithms for unmanned undersea vehicle: a review[J]. Journal of Unmanned Undersea Systems, 2020, 28(4): 351-358. doi: 10.11993/j.issn.2096-3920.2020.04.001
|
[7] |
ZENG Z, LIAN L, SAMMUT K, et al. A survey on path planning for persistent autonomy of autonomous underwater vehicles[J]. Ocean Engineering, 2015, 110: 303-313. doi: 10.1016/j.oceaneng.2015.10.007
|
[8] |
章飞, 胡春磊. 基于滚动速度障碍法的AUV动态避障路径规划[J]. 水下无人系统学报, 2021, 29(1): 30-38.
ZHANG F, HU C L. Research on AUV dynamic obstacle avoidance path planning based on the rolling speed obstacle method[J]. Journal of Unmanned Undersea Systems, 2021, 29(1): 30-38.
|
[9] |
MCMAHON J, PLAKU E. Mission and motion planning for autonomous underwater vehicles operating in spatially and temporally complex environments[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 1-20.
|
[10] |
BORENSTEIN J, KOREN Y. The vector field histogram-fast obstacle avoidance for mobile robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3): 278-288. doi: 10.1109/70.88137
|
[11] |
ULRICH I, BORENSTEIN J. VFH+: reliable obstacle avoidance for fast mobile robots[C]//Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat No98CH36146). Leuven, Belgium: IEEE, 1998: 1572-1577.
|
[12] |
徐茂竹, 李弘, 李亚光, 等. 单目视觉引导下的无人艇局部避障方法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(4): 732-741.
XU M Z, LI H, LI Y G, et al. Local obstacle avoidance for unmanned surface vehicle via monocular vision[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(4): 732-741.
|
[13] |
PAPPAS P, CHIOU M, EPSIMOS G-T, et al. VFH plus based shared control for remotely operated mobile robots[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). Abu Dhabi, United Arab Emirates: IEEE, 2020: 366-373.
|
[14] |
SARY I P, NUGRAHA Y P, MEGAYANTI M, et al. Design of obstacle avoidance system on hexacopter using vector field histogram-plus[C]//8th IEEE International Conference on System Engineering and Technology (ICSET). Bandung, Indonesia: IEEE, 2018: 18-23.
|
[15] |
娄虎, 赵泽钰, 阮文涛, 等. 基于自调节VFH+的水面无人艇雷达避障控制研究[J]. 机械制造与自动化, 2021, 50(3): 179-183.
LOU H, ZHAO Z Y, YUAN W T, et al. Research on obstacle avoidance control of lidar for USV based on self-adjusting VFH+[J]. Machine Building & Automation, 2021, 50(3): 179-183.
|
[16] |
陈浩华, 赵红, 王宁, 等. 复杂扰动下水下机器人的轨迹精确跟踪控制[J]. 中国舰船研究, 2022, 17(2): 98-108.
CHEN H H, ZHAO H, WANG N, et al. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98-108.
|
[17] |
李亚鑫, 刘里宵, 王宇. 欠驱动水下机器人的最优等效补偿轨迹跟踪控制[J]. 控制与决策, 2024, 39(9): 2923-2931.
LI Y X, LIU L X, WANG Y. Optimal equivalent compensation trajectory tracking control for underactuated underwater robots[J]. Control and Decision, 2024, 39(9): 2923-2931.
|
[18] |
YUAN C, SHUAI C, FANG Y, et al. A novel real-time obstacle avoidance method in guidance layer for AUVs' path following[J]. IEEE Transactions on Vehicular Technology, 2023, 73(2): 1845-1856.
|
[19] |
FOSSEN T I. Handbook of marine craft hydrodynamics and motion control[M]. New York: John Wiley and Sons, 2011.
|
[20] |
REIS M F, JAIN R P, AGUIAR A P, et al. Robust moving path following control for robotic vehicles: theory and experiments[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3192-3199. doi: 10.1109/LRA.2019.2925733
|
[21] |
DIAZ D, MARIN L. VFH plus D: An improvement on the VFH plus algorithm for dynamic obstacle avoidance and local planning[C]//21st IFAC World Congress on Automatic Control-Meeting Societal Challenges. Berlin, Germany: Elsevier, 2020: 9590-9595.
|
[22] |
刘淑霞, 李立刚, 金久才, 等. 基于漂角估计的无人船局部动态避障方法[J]. 电光与控制, 2023, 30(1): 103-108+119. doi: 10.3969/j.issn.1671-637X.2023.01.018
LIU S X, LI L G, JIN J C, et al. Local dynamic avoidance method of USV with drift angle estimation[J]. Electronics Optics & Control, 2023, 30(1): 103-108+119. doi: 10.3969/j.issn.1671-637X.2023.01.018
|
[23] |
韩鹏, 刘志林, 周泽才, 等. 基于LOS法的自航模航迹跟踪控制算法实现[J]. 应用科技, 2018, 45(3): 66-70.
HAN P, LIU Z L, ZHOU Z C, et al. Path tracking control algorithm based on LOS method for surface self-propulsion vessel[J]. Applied Science and Technology, 2018, 45(3): 66-70.
|
[24] |
PEREZ T, FOSSEN T I. A matlab toolbox for parametric identification of radiation-force models of ships and offshore structures[J]. Modeling Identification and Control, 2009, 30(1): 1-15. doi: 10.4173/mic.2009.1.1
|
[25] |
WANG N, SU S F. Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2021, 29(2): 794-803. doi: 10.1109/TCST.2019.2955657
|
[26] |
SHI L, ZHENG R, ZHANG S, et al. Cooperative estimation to reconstruct the parametric flow filed using multiple AUVs[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
|