• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
LIU Xu, CHEN Zhen, LIU Zhen, LI Ming. Study on Hybrid Energy Storage Control Method for Wave Energy Power Supply System in Comprehensive Observation Buoys[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0070
Citation: LIU Xu, CHEN Zhen, LIU Zhen, LI Ming. Study on Hybrid Energy Storage Control Method for Wave Energy Power Supply System in Comprehensive Observation Buoys[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0070

Study on Hybrid Energy Storage Control Method for Wave Energy Power Supply System in Comprehensive Observation Buoys

doi: 10.11993/j.issn.2096-3920.2024-0070
  • Received Date: 2024-04-16
  • Accepted Date: 2024-05-13
  • Rev Recd Date: 2024-05-09
  • Available Online: 2024-11-04
  • Wave energy is a widely distributed green renewable energy source capable of providing continuous electrical power to comprehensive observation buoys. However, its rapid fluctuations and high peak-to-average ratio require hybrid energy storage systems to smooth out its energy fluctuations for reliable electrical load supply. These hybrid energy storage systems need to balance power and energy density characteristics, requiring energy management strategies to fully utilize device characteristics and extend system lifespan. This paper focuses on studying energy distribution and power control methods in wave energy supply, proposing a hybrid energy storage system power-sharing control strategy based on Deep Deterministic Policy Gradient (DDPG) to maintain bus stability and leverage the advantages of two energy storage technologies. Simulation and physical experiments demonstrate that this strategy significantly enhances system stability, reduces peak battery charge/discharge power, and keeps bus voltage ripple below 1.6%.

     

  • loading
  • [1]
    WANG J, WU W, WANG H. Blue energy in China: Exploring the prospects and development path for marine renewable energy industries[C]//IOP Conference Series: Earth and Environmental Science. Wuhan: IOP Publishing, 2023.
    [2]
    Davidson J. Energy harvesting for marine based sensors[D]. Australia: James Cook University, 2016.
    [3]
    谭梦琳, 刘臻, 张晓霞, 等. 基于振荡水柱原理的大型海洋浮标供电系统设计及优化[J]. 海岸工程, 2023(4): 341-350. doi: 10.12362/j.issn.1002-3682.20230319001

    TAN M L, LIU Z, ZHANG X X, et al. Design and optimization of large ocean buoy power supply system based on principle of oscillating water column[J]. Coastal Engineering, 2023(4): 341-350. doi: 10.12362/j.issn.1002-3682.20230319001
    [4]
    JAHANGIR, MOHAMMAD H, SHAHSAVARI, et al. Feasibility study of a zero emission PV/Wind turbine/wave energy converter hybrid system for stand-alone power supply: A case study[J]. Journal of Cleaner Production, 2020, 262: 121250. doi: 10.1016/j.jclepro.2020.121250
    [5]
    KLUGER J M, HAJI M N, SLOCUM A H. The power balancing benefits of wave energy converters in offshore wind-wave farms with energy storage[J]. Applied Energy, 2023, 331: 120389. doi: 10.1016/j.apenergy.2022.120389
    [6]
    JAHANGIR M H, SALEHI M, ALIMORADIYAN H. Exergy and environmental analysis of oscillating wave energy converter hybrid with other renewable energy resources: A case study[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2023, 18(1): 2219676. doi: 10.1080/15567249.2023.2219676
    [7]
    RASOOL S, MUTTAQI K M, SUTANTO D. Modelling of a wave-to-wire system for a wave farm and its response analysis against power quality and grid codes[J]. Renewable Energy, 2020, 162: 2041-2055. doi: 10.1016/j.renene.2020.10.035
    [8]
    MA C, DONG S, LIAN J, et al. Multi-objective sizing of hybrid energy storage system for large-scale photovoltaic power generation system[J]. Sustainability, 2019, 11(19): 5441. doi: 10.3390/su11195441
    [9]
    KHALEEL M, YUSUPOV Z, YASSER N, et al. Enhancing microgrid performance through hybrid energy storage system integration: ANFIS and GA approaches[J]. Int. J. Electr. Eng. and Sustain, 2023: 38-48.
    [10]
    陈攀. 锂离子动力电池脉冲放电下的热特性研究[D]. 武汉: 武汉理工大学, 2022.
    [11]
    PARWAL A, FREGELIUS M, TEMIZ I, et al. Energy management for a grid-connected wave energy park through a hybrid energy storage system[J]. Applied Energy, 2018, 231: 399-411. doi: 10.1016/j.apenergy.2018.09.146
    [12]
    RASOOL S, MUTTAQI K M, SUTANTO D. A multi-filter based dynamic power sharing control for a hybrid energy storage system integrated to a wave energy converter for output power smoothing[J]. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1693-1706. doi: 10.1109/TSTE.2022.3170938
    [13]
    TAN P, HUANG L, CHEN M, et al. A robust faster joint control of a direct-drive wave energy converter combined with supercapacitor and battery energy storage[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11: 5417-5429. doi: 10.1109/JESTPE.2023.3304370
    [14]
    吴明东, 盛松伟, 张亚群, 等. 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9(1): 42-47.

    WU M D, SHENG S W, ZHANG Y Q, et al. Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Enengy, 2021, 9(1): 42-47.
    [15]
    刘野, 丁圆强, 赵环宇, 等. 大型海洋资料浮标波浪能供电装置数值模拟研究[J]. 山东科学, 2017, 30(6): 6-14. doi: 10.3976/j.issn.1002-4026.2017.06.002

    LIU Y, DING Y Q, ZHAO H Y, et al. Numerical simulation of large ocean data buoy wave energy convertor[J]. Shandong Science, 2017, 30(6): 6-14. doi: 10.3976/j.issn.1002-4026.2017.06.002
    [16]
    LIU Z, CUI Y, LI M, et al. Steady state performance of an axial impulse turbine for oscillating water column wave energy converters[J]. Energy, 2017, 141: 1-10. doi: 10.1016/j.energy.2017.09.068
    [17]
    袁煜博. 四开关变换器控制技术研究[D]. 北京: 北京交通大学, 2021.
    [18]
    GAO C, ZHAO J, WU J, et al. Optimal fuzzy logic based energy management strategy of battery/supercapacitor hybrid energy storage system for electric vehicles[C]//2016 12th World Congress on Intelligent Control and Automation (WCICA). Guilin: IEEE, 2016.
    [19]
    HOU Y, LIU L, WEI Q, et al. A novel DDPG method with prioritized experience replay[C]//2017 IEEE international conference on systems, man, and cybernetics (SMC). Canada: IEEE, 2017.
    [20]
    GALEELA M, KOPSIDAS K, CHAKRAVORTY D. Reliability framework integrating grid scale BESS considering BESS degradation[J]. International Journal of Electrical Power & Energy Systems, 2023, 152: 109228.
    [21]
    KOVALTCHOUK T, MULTON B, AHMED H B, et al. Enhanced aging model for supercapacitors taking into account power cycling: Application to the sizing of an energy storage system in a direct wave energy converter[J]. IEEE Transactions on Industry Applications, 2014, 51(3): 2405-2414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article Metrics

    Article Views(15) PDF Downloads(3) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return