• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
LI Zhiguo, MA Feng, ZHU Wei, JIA Xiyu, LI Yifan, CHEN Lei. Research on Prediction of Damage Deformation Response of Explosion Target Plate in Water Based on Deep Learning[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0069
Citation: LI Zhiguo, MA Feng, ZHU Wei, JIA Xiyu, LI Yifan, CHEN Lei. Research on Prediction of Damage Deformation Response of Explosion Target Plate in Water Based on Deep Learning[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0069

Research on Prediction of Damage Deformation Response of Explosion Target Plate in Water Based on Deep Learning

doi: 10.11993/j.issn.2096-3920.2024-0069
  • Received Date: 2024-04-12
  • Accepted Date: 2024-06-04
  • Rev Recd Date: 2024-05-24
  • Available Online: 2024-11-07
  • The deformation of the target plate in underwater explosion manifests as a complex nonlinear coupling interaction between the structure and the fluid under the impact of shock waves. In this paper, a deep learning neural network is designed and optimized to predict the dynamic deformation displacement data of the target plate under different conditions of target plate thickness, shock factor, explosive dosage, and explosion distance. The R2 coefficient and accuracy rate of the test set reach 0.99 and 0.95. Compared with 25 simulation conditions, the explosion deformation response analysis graph formed by 9, 261 working conditions based on the prediction model can cover a more detailed range of characteristic parameters and the trend of maximum deformation variation, providing important reference for underwater weapon design and underwater protection applications.

     

  • loading
  • [1]
    杨允锴, 武双章, 高振儒, 等. 装药参数影响钢筋混凝土柱毁伤效应的试验与数值仿真研究[J]. 爆破, 2023, 40(3): 143-150.

    YANG Y K, WU S Z, GAO Z R, et al. Experimental and numerical analysis on influence of charge parameters on damage effect of RC column[J]. Blasting, 2023, 40(3): 143-150.
    [2]
    何保福, 沈亚鹏. 板壳理论[M]. 第1版. 西安: 西安交通大学出版社, 1993.
    [3]
    BEITER K A. The effect of stiffener smearing in a ship-like box structure subjected to an underwater explosion[D]. Monterey, CA: Naval Postgraduate School, 1998.
    [4]
    TRAN P, WU C, SALEH M, et al. Composite structures subjected to underwater explosive loadings: A comprehensive review[J]. Composite Structures, 2021, 263(2): 113684.
    [5]
    王琰, 蒋海燕, 韩璐, 等. 爆炸冲击波作用下板架结构响应研究综述[J]. 兵器装备工程学报, 2024, 45(3): 151-160.

    WANG Y, JIANG H Y, HAN L, et al. A review of structural response of plate frame under explosive shock wave[J]. Journal of Ordnance Equipment Engineering, 2024, 45(3): 151-160.
    [6]
    孙远翔, 刘新, 陈岩武, 等. 水下爆炸气泡射流载荷及对结构毁伤研究进展[J]. 舰船科学技术, 2024, 46(1): 1-7.

    SUN Y X, LIU X, CHEN Y W, et al. Research progress of underwater explosion bubble jet and its damage to structures[J]. Ship Science and Technology, 2024, 46(1): 1-7.
    [7]
    李旭辉, 郭晓辉, 程帅, 等. 基于深度神经网络的鱼雷命中概率预测方法[J]. 水下无人系统学报, 2023, 31(5): 783-788.

    LI X H, GUO X H, CHENG S, et al. Torpedo hit probability prediction method based on deep neural network[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 783-788.
    [8]
    刘文成, 李朋波, 任少飞, 等. 瞬态外压载荷时间特性对网格加筋圆柱壳动力屈曲影响[J]. 舰船科学技术, 2018, 40(19): 18-23. doi: 10.3404/j.issn.1672-7649.2018.10.004

    LIU W C, LI P B, REN S F, et al. Effects of transient pressure time characteristics on dynamic buckling of grid stiffened cylindrical shells[J]. Ship Science and Technology, 2018, 40(19): 18-23. doi: 10.3404/j.issn.1672-7649.2018.10.004
    [9]
    COLLINS M. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms[J]. Theoretical Computerence, 2002, 410(21-23): 2279-2284.
    [10]
    BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52(1): 477-508. doi: 10.1146/annurev-fluid-010719-060214
    [11]
    张树霞, 赵捍东, 韩志高. 基于 PSO-SVM 的侵彻效果预测方法[J]. 中北大学学报(自然科学版), 2015(2): 166-170, 175.

    ZHANG S X, ZHAO H D, HAN Z GAO. Method of penetrate result prediction based on PSO-SVM[J]. Journal of North University of China(Natural Science Edition), 2015(2): 166-170, 175.
    [12]
    MASOUD B, KEYVAN S. Incremental explosive analysis and its application to performance-based assessment of stiffened and unstiffened cylindrical shells subjected to underwater explosion[J]. Shock and Vibration, 2017, 2017: 1-17.
    [13]
    王烁, 石全. 基于人工神经网络的侵彻毁伤模式识别[J]. 兵器装备工程学报, 2017, 38(10): 60-64.

    WANG S, SHI Q. Penetration pattern recognition based on artificial neural network[J]. Journal of Ordnance Equipment Engineering, 2017, 38(10): 60-64.
    [14]
    ABDULKADIR K, HASBI Y, OSMAN O, et al. Estimating the properties of ground-waste-brick mortars using DNN and ANN[J]. Computer Modeling in Engineering & Sciences, 2019, 118(1): 207-228
    [15]
    TAEKYUNG L, BYUNG J K, JINYEONG Y, et al. Deep-learning approach to predict a severe plastic anisotropy of caliber-rolled Mg alloy[J]. Materials Letters, 2020, 269: 1-3.
    [16]
    张爱然, 罗新荣, 杨飞, 等. 基于模糊神经网络的瓦斯爆炸危险性评价模型[J]. 黑龙江科技学院学报, 2008, 18(1): 54-57.

    ZHANG A R, LUO X R, YANG F, et al. Risk assessment model of gas explosion based on fuzzy neural network[J]. Journal of Heilongjiang University of Science and Technology, 2008, 18(1): 54-57.
    [17]
    陈聪, 候磊, 李乐乐, 等. 基于GRU改进RNN神经网络的飞机燃油流量预测[J]. 科学技术与工程, 2021, 21(27): 11663-11673.

    CHEN C, HOU L, LI LL, et al. Prediction of aircraft fuel flow based on recurrent neural network[J]. Science Technology and Engineering, 2021, 21(27): 11663-11673.
    [18]
    王树山, 张静骁, 王传昊, 等. 水中爆炸冲击波对靶体结构的毁伤准则研究[J]. 火炸药学报, 2020, 43(3): 262-270.

    WANG S S, ZHANG J X, WANG C H, et al. Damage criterion of underwater explosion shock wave on target[J]. Chinese Journal of Explosives & Propellants, 2020, 43(3): 262-270.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article Views(14) PDF Downloads(4) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return