• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 33 Issue 1
Mar  2025
Turn off MathJax
Article Contents
MA Xiaoyi, CHEN Yihong, WANG Fei, XIE Shuo. Application of Structure Tensor-Based Image Fusion Method in Marine Exploration[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 84-91. doi: 10.11993/j.issn.2096-3920.2024-0066
Citation: MA Xiaoyi, CHEN Yihong, WANG Fei, XIE Shuo. Application of Structure Tensor-Based Image Fusion Method in Marine Exploration[J]. Journal of Unmanned Undersea Systems, 2025, 33(1): 84-91. doi: 10.11993/j.issn.2096-3920.2024-0066

Application of Structure Tensor-Based Image Fusion Method in Marine Exploration

doi: 10.11993/j.issn.2096-3920.2024-0066
  • Received Date: 2024-04-09
  • Accepted Date: 2024-07-10
  • Rev Recd Date: 2024-06-20
  • Available Online: 2025-01-22
  • A single sensor is insufficient for effective marine detection. Infrared light and visible light have strong complementarity, and fusing them can generate high-quality images that enable more accurate and comprehensive detection of marine targets. However, existing fusion methods have not been applied in marine detection and are not specifically developed for it, leading to poor fusion results. Additionally, there is a lack of deep learning datasets tailored for marine image fusion. To obtain high-quality color fusion images with a prominent performance in detecting targets and obtaining comprehensive information, the deep learning-based image fusion method using structure tensors was optimized based on the characteristics of marine targets. Multi-scale convolution was incorporated, and image fusion was performed according to channels. The collected data were used for comparative simulation experiments, with a variety of evaluation metrics applied. The results indicate that the improved image fusion method outperforms the original algorithm in six metrics, and its overall performance is better than the other ten commonly used image fusion algorithms. Furthermore, its generalization has been validated on other public datasets. The improved structure tensor-based image fusion method has an excellent performance in maritime situational awareness, with fusion results highlighting target features and surpassing the performance of other methods.

     

  • loading
  • [1]
    邱志明, 孟祥尧, 马焱, 等. 海上无人系统发展及关键技术研究[J]. 中国工程科学, 2023, 25(3): 74-83.

    QIU Z M, MENG X Y, MA Y, et al. Development and key technologies of maritime unmanned systems[J]. Strategic Study of Chinese Academy of Engineering, 2023, 25(3): 74-83.
    [2]
    贲可荣, 王斌. 海洋装备智能化与智能化装备思考[J]. 江苏科技大学学报(自然科学版), 2021, 35(2): 1-11.

    BEN K R, WANG B. Thinking on the intellectualization of marine equipment and marine intelligent equipment[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(2): 1-11.
    [3]
    张蕾. 红外与可见光图像融合技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.
    [4]
    TOET A. Image fusion by a ratio of low-pass pyramid[J]. Pattern Recognition Letters, 1989, 9(4): 245-253.
    [5]
    PAJARES G, JESÚS M D L C. A wavelet-based image fusion tutorial[J]. Pattern Recognition, 2004, 37(9): 1855-1872.
    [6]
    杨晓慧, 金海燕, 焦李成. 基于DT-CWT的红外与可见光图像自适应融合[J]. 红外与毫米波学报, 2007, 26(6): 419-424. doi: 10.3321/j.issn:1001-9014.2007.06.005

    YANG X H, JIN H Y, JIAO L C. Adaptive image fusion algorithm for infrared and visible light images based on DT-CWT[J]. Journal of Infrared and Millimeter Waves, 2007, 26(6): 419-424. doi: 10.3321/j.issn:1001-9014.2007.06.005
    [7]
    LI S, KANG X, HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
    [8]
    BAVIRISETTI D P, DHULI R. Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform[J]. IEEE Sensors Journal, 2015, 16(1): 203-209.
    [9]
    KUMAR B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 5: 1193-1204.
    [10]
    MA J, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109. doi: 10.1016/j.inffus.2016.02.001
    [11]
    LI H, WU X. Infrared and visible image fusion using latent low-rank representation[EB/OL]. [2018-01-29]. https://arxiv.org/abs/1804.08992.
    [12]
    BAVIRISETTI D P, XIAO G, ZHAO J, et al. Multi-scale guided image and video fusion: A fast and efficient approach[J]. Circuits, Systems, and Signal Processing, 2019, 38(1): 5576-5605.
    [13]
    BAVIRISETTI D P, DHULI R. Two-scale image fusion of visible and infrared images using saliency detection[J]. Infrared Physics & Technology, 2016, 76: 52-64.
    [14]
    罗迪. 无人机平台下的可见光与热红外图像融合和目标检测研究[D]. 南京: 南京航空航天大学, 2021.
    [15]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008.
    [16]
    MA J, YU W, LIANG P, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.
    [17]
    XU H, LIANG P, YU W, et al. Learning a generative model for fusing infrared and visible images via conditional generative adversarial network with dual discriminators[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao, China: IJCAI, 2019.
    [18]
    PRABHAKAR K R, SRIKAR V S, BABU R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: ICCV, 2017.
    [19]
    LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
    [20]
    LI H, WU X J, KITTLER J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 2: 72-86.
    [21]
    TANG W, HE F, LIU Y. TCCFusion: An infrared and visible image fusion method based on transformer and cross correla-tion[J]. Pattern Recognition, 2023, 137: 109295.
    [22]
    LI H, WU X J, KITTLER J. Infrared and visible image fusion using a deep learning framework[C]//2018 24th International Conference on Pattern Recognition. Beijing, China: ICPR, 2018.
    [23]
    LONG Y, JIA H, ZHONG Y, et al. RXDNFuse: A aggregated residual dense network for infrared and visible image fusion[J]. Information Fusion, 2021, 69(1): 128-141.
    [24]
    MA J, TANG L, XU M, et al. STDFusionNet: An infrared and visible image fusion network based on salient target detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70(1): 1-13.
    [25]
    LIU J, FAN X, JIANG J, et al. Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 99(1): 105-119.
    [26]
    TANG L, ZHANG H, XU H, et al. Rethinking the necessity of image fusion in high-level vision tasks: A practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J]. Information Fusion, 2023, 99:101870.
    [27]
    JUNG H, KIM Y, JANG H, et al. Unsupervised deep image fusion with structure tensor representations[J]. IEEE Transactions on Image Processing, 2020, 29(99): 3845-3858.
    [28]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: CVPR, 2016.
    [29]
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. [2015-02-11]. https://arxiv.org/abs/1502.03167.
    [30]
    MISRA D. Mish: A self regularized non-monotonic activation function[EB/OL]. [2019-08-23]. https://arxiv.org/abs/1908.08681.
    [31]
    LIN M, CHEN Q, YAN S. Network In Network[EB/OL]. [2013-11-16]. https://arxiv.org/abs/1312.4400.
    [32]
    WANG Z, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84. doi: 10.1109/97.995823
    [33]
    唐霖峰, 张浩, 徐涵, 等. 基于深度学习的图像融合方法综述[J]. 中国图象图形学报, 2023, 28(1): 3-36. doi: 10.11834/jig.220422

    TANG L F, ZHANG H, XU H, et al. Deep learning-based image fusion: A survey[J]. Journal of Image and Graphics, 2023, 28(1): 3-36. doi: 10.11834/jig.220422
    [34]
    TOET A. The TNO multiband image data collection[J]. Data in Brief, 2017, 15: 249-251. doi: 10.1016/j.dib.2017.09.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article Views(61) PDF Downloads(17) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return