Citation: | SUN Xuyang, ZHOU Jingjun, WANG Qian, ZHANG Zhimin. Vibration Reduction Method for Power Cabin of Torpedoes Based on Acoustic Metamaterials[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1072-1081. doi: 10.11993/j.issn.2096-3920.2024-0063 |
[1] |
尹韶平. 鱼雷减振降噪技术[M]. 北京: 国防工业出版社, 2016.
|
[2] |
史小锋, 党建军, 梁跃, 等. 水下攻防武器能源动力技术发展现状及趋势[J]. 水下无人系统学报, 2021, 29(6): 634-647.
SHI X F, DANG J J, LIANG Y, et al. Development status and trend of energy and power technology for underwater attack and defensive weapon[J]. Journal of Unmanned Undersea Systems, 2021, 29(6): 634-647.
|
[3] |
郭勍, 庞多, 刘小西, 等. 多平台鱼雷实航可靠性试验剖面设计方法[J]. 水下无人系统学报, 2022, 30(1): 128-134.
GUO Q, PANG D, LIU X X, et al. Profile design method of reliability test for multi-platform launching torpedo in sea trial[J]. Journal of Unmanned Undersea Systems, 2022, 30(1): 128-134.
|
[4] |
钱在棣. 鱼雷噪声控制技术综述[C]//第十一届船舶水下噪声学术讨论会论文集. [S.l.]: 中国造船工程学会船舶力学学术委员会, 2007.
|
[5] |
吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13): 68-78. doi: 10.3901/JME.2016.13.068
WU J H, MA F Y, ZHANG S W, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68-78. doi: 10.3901/JME.2016.13.068
|
[6] |
顾仲权. 振动主动控制[M]. 北京: 国防工业出版社, 1997.
|
[7] |
向育佳, 季振林, 赵欣棠. 基于Warshall-Floyd算法的船舶结构噪声传递路径研究[J]. 振动与冲击, 2019, 38(2): 82-89, 97.
XIANG Y J, JI Z L, ZHAO X T. Transfer path analysis of ship structure-borne noises based on the Warshall-Floyd algorithm[J]. Journal of Vibration and Shock, 2019, 38(2): 82-89, 97.
|
[8] |
刘岩, 张庆荣, 费梦茹. 船舶结构振动噪声分析与控制措施[J]. 船舶物资与市场, 2021(12): 53-54.
|
[9] |
刘五合, 吴樾, 张帆. 基于声学超材料的齿轮减速器箱体减振方法研究[J]. 热能动力工程, 2022, 37(9): 170-177.
LIU W H, WU Y, ZHANG F. Research on vibration reduction method of gear reducer box based on acoustic metamaterials[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 170-177.
|
[10] |
夏百战, 杨天智. 声学超材料和声子晶体研究进展[J]. 动力学与控制学报, 2023, 21(7): 1-4.
XIA B Z, YANG T Z. Progress in acoustic metamaterials and phononic crystals[J]. Journal of Dynamics and Control, 2023, 21(7): 1-4.
|
[11] |
NATEGHI A, SANGIULIANO L, CLAEYS C, et al. Design and experimental validation of a metamaterial solution for improved noise and vibration behavior of pipes[J]. Journal of Sound and Vibration, 2019, 455: 96-117. doi: 10.1016/j.jsv.2019.05.009
|
[12] |
王刚. 声子晶体局域共振带隙机理及减振特性研究[D]. 长沙: 国防科技大学, 2005.
|
[13] |
WANG G, WEN X, WEN J, et al. Quasi-one-dimensional periodic structure withlocally resonant band gap[J]. Journal of Applied Mechanics, 2006, 73(1): 167-170. doi: 10.1115/1.2061947
|
[14] |
FRANDSEN N M M, BILAL O R, JENSEN J S, et al. Inertial amplification of continuous structures: Large band gaps from small masses[J]. Journal of Applied Physics, 2016, 119(12): 124902. doi: 10.1063/1.4944429
|
[15] |
朱席席. 基于声学超材料的加筋板振动与声辐射控制[D]. 长沙: 国防科学技术大学, 2016.
|
[16] |
顾金桃, 王晓乐, 汤又衡, 等. 提高飞机壁板低频宽带隔声的层合声学超材料[J]. 航空学报, 2022, 43(1): 355-364.
GU J T, WANG X L, TANG Y H. Laminated acoustic metamaterial for improving low-frequency broadband sound insulation of aircraft wall panels[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 355-364.
|
[17] |
温激鸿, 蔡力, 郁殿龙, 等. 声学超材料基础理论与应用[M]. 北京: 科学出版社, 2018.
|