• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
SHI Lin, HU Qiao, SHI Xindong, SUN Liangjie, ZHANG jian, Liu Haiyang. Research on Multi-parameter identification of underwater robot joint motor[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0062
Citation: SHI Lin, HU Qiao, SHI Xindong, SUN Liangjie, ZHANG jian, Liu Haiyang. Research on Multi-parameter identification of underwater robot joint motor[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0062

Research on Multi-parameter identification of underwater robot joint motor

doi: 10.11993/j.issn.2096-3920.2024-0062
  • Received Date: 2024-04-03
  • Accepted Date: 2024-05-11
  • Rev Recd Date: 2024-04-29
  • Available Online: 2024-10-28
  • With the rapid development of underwater unmanned systems, underwater joint motor plays an important role as the core driving device of underwater robot, underwater robot arm and other underwater equipment. In this paper, the multi-parameter on-line identification of underwater articulated motor is studied to solve the problem that the precision and stability of motor control are deteriorated due to the change of motor parameters under the influence of different working environments. Specifically, the method of increasing steady-state operating points is used to realize multi-parameter full rank identification. At the same time, in order to improve the accuracy and robustness of the identification method, the feasibility of Extended Kalman filter(EKF) and H-infinity filter (HIF) in the identification of motor parameters was studied. Then a new method based on EKF and H infinite joint estimation is proposed. Through simulation comparison, it is found that in parameter identification, the steady-state standard deviation of the proposed joint estimation method is reduced by 84.7% compared with the adaptive EKF method, and the accuracy is increased by 91.7% compared with the adaptive HIF method. The robustness and accuracy of the proposed method based on EKF and H infinite joint estimation are verified, which provides theoretical and technical support for the stable and efficient operation of the underwater joint motor.

     

  • loading
  • [1]
    ITO K, LIANG Y, ZOU J. Least-squares method for inverse medium problems[J]. 2022, DOI: 10.48550/arXiv.2201.00280.
    [2]
    SHE J, Xie M, LI Y, et al. A VFF-RLS method of inertia identification for PMSM[C]//2019 IEEE Conference on Control Technology and Applications(CCTA). Hong Kong, China: IEEE, 2019: 942-943.
    [3]
    董召强, 徐秋霞, 高瑾. 基于最小二乘法和硬件在环平台的永磁同步电机参数辨识[J]. 电机与控制应用, 2017, 44(6): 57-62. doi: 10.3969/j.issn.1673-6540.2017.06.011

    DONG Z Q, XU Q X, GAO J. Parameters identification of pmsm based on recurrence least square and hardware in the loop platform[J]. Electric Machines & Control Application, 2017, 44(6): 57-62. doi: 10.3969/j.issn.1673-6540.2017.06.011
    [4]
    娄天浩, 杨家强, 高健, 等. 基于递推辅助变量最小二乘法的永磁电机参数在线辨识策略[J]. 电工技术, 2022(5): 96-100, 104.

    LOU T H, YANG J Q, GAO J, et al. Online identification strategy of permanent magnet motor parameters based on RIVLS[J]. Electric Engineering, 2022(5): 96-100, 104.
    [5]
    吴洪涛, 何宗卿, 朱亮, 等. 基于最小二乘法的永磁同步电机参数辨识[J]. 电子技术, 2021, 50(2): 48-49.

    WU H T, HE Z Q, ZHU L, et al. Parameter identification of permanent magnet synchronous motor based on least squares[J]. Electronic Technology, 2021, 50(2): 48-49.
    [6]
    刘旭, 王旭平, 王淑红, 等. 基于最小二乘法的永磁同步电机电感辨识研究[J]. 电机与控制应用, 2020, 47(6): 1-5, 32. doi: 10.12177/emca.2020.033

    LIU X, WANG X P, WANG S H, et al. Inductance identification of permanent magnet synchronous motor based on least square method[J]. Electric Machines & Control Application, 2020, 47(6): 1-5, 32. doi: 10.12177/emca.2020.033
    [7]
    方桂花, 王鹤川, 高旭. 基于动态遗忘因子递推最小二乘法的永磁同步电机参数辨识算法[J]. 计算机应用与软件, 2021, 38(1): 280-283. doi: 10.3969/j.issn.1000-386x.2021.01.047

    FANG F H, WAGN H C, GAO X. Parameter identification algorithm of permanent magnet synchronous motor based on dynamic forgetting factor recursive least square method[J]. Computer Applications and Software, 2021, 38(1): 280-283 doi: 10.3969/j.issn.1000-386x.2021.01.047
    [8]
    HOAGG J B, BERNSTEIN D S. Retrospective cost model reference adaptive control for nonminimum-phase discrete-time systems, Part 2: Stability analysis[C]//Proceedings of the 2011 American Control Conference. San Francisco, CA, USA: IEEE, 2011: 2927-2932.
    [9]
    M. Elbuluk, Tong Liu and I. Husain, "Neural network-based model reference adaptive systems for high performance motor drives and motion controls, " Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129), Rome, Italy, 2000: 959-965.
    [10]
    高东旭, 周兰, 陈静, 等. 基于扰动补偿的无微分模型参考自适应控制系统设计[J]. 控制理论与应用, 2023, 40(4): 735-743. doi: 10.7641/CTA.2022.10906

    GAO D X, ZHOU L, CHEN J, et al. Design of derivative-free model-reference adaptive control for a class of uncertain systems based on disturbance compensation[J]. Control Theory & Applications, 2023, 40(4): 735-743. doi: 10.7641/CTA.2022.10906
    [11]
    齐放, 邓智泉, 仇志坚, 等. 基于MRAS的永磁同步电机无速度传感器[J]. 电工技术学报, 2007, 22(4): 53-58. doi: 10.3321/j.issn:1000-6753.2007.04.009

    QI F, DENG Z Q, CHOU Z J, et al. Sensorless Technology of Permanent Magnet Synchronous Motors Based on MRAS[J]. Transactions of China Electrotechnical Society, 2007, 22(4): 53-58. doi: 10.3321/j.issn:1000-6753.2007.04.009
    [12]
    WANG Q, ZHANG X, ZHANG C. Double sliding-mode model reference adaptive system speed identification for vector control of permanent magnet synchronous motors[J]. Proceedings of the Csee, 2014, 34(6): 897-902.
    [13]
    王飞宇, 田井呈, 卓克琼, 等. 基于改进模型参考自适应算法的永磁同步电机转动惯量辨识[J]. 电机与控制应用, 2016, 43(8): 63-67, 87. doi: 10.3969/j.issn.1673-6540.2016.08.012

    WANG Y F, TIAN J C, ZHUO K Q, et al. Inertia identification of permanent magnet synchronous motor based on improved model reference adaptive system algorithm[J]. Electric Machines & Control Application, 2016, 43(8): 63-67, 87. doi: 10.3969/j.issn.1673-6540.2016.08.012
    [14]
    李垣江, 董鑫, 魏海峰, 等. 基于改进模型参考自适应系统的永磁同步电机参数辨识[J]. 控制理论与应用, 2020, 37(9): 1983-1988. doi: 10.7641/CTA.2020.90654

    LI Y J, DONG X, WEI H F, et al. Parameter identification method of permanent magnet synchronous motor based on improved model reference adaptive system[J]. Control Theory & Applications, 2020, 37(9): 1983-1988. doi: 10.7641/CTA.2020.90654
    [15]
    BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform kalman filter. Part II: Field Program Implementation[J]. Monthly Weather Review, 2001, 129(3): 420-436. doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
    [16]
    GAO X, YOU D, KATAYAMA S. Seam tracking monitoring based on adaptive kalman filter embedded elman neural network during high-power fiber laser welding[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4315-4325. doi: 10.1109/TIE.2012.2193854
    [17]
    徐会风, 苏少平, 杜庆诚, 等. 基于扩展卡尔曼滤波观测器的无刷直流电机无位置传感器控制系统研究[J]. 微电机, 2020, 53(5): 31-39, 50. doi: 10.3969/j.issn.1001-6848.2020.05.007

    XU H F, SU S P, DU Q C, et al. Research on sensorless control system of brushless DC motor based on extended Kalman filter observer[J]. Micromotors, 2020, 53(5): 31-39, 50. doi: 10.3969/j.issn.1001-6848.2020.05.007
    [18]
    POTNURU D, CHANDRA K P B, ARASARATNAM I, et al. Derivative-free square-root cubature Kalman filter for non-linear brushless DC motors[J]. Iet Electric Power Applications, 2016, 10(5): 419-429. doi: 10.1049/iet-epa.2015.0414
    [19]
    刘康安, 张伟伟, 肖永超, 等. 基于自适应无迹卡尔曼滤波的四旋翼无人机姿态解算[J]. 电光与控制, 2022, 29(7): 126-131. doi: 10.3969/j.issn.1671-637X.2022.07.023

    LIU K A, ZHANG W W, XIAO Y C, et al. Attitude calculation of quadrotor UAV based on adaptive unscented Kalman filter[J]. Electronics Optics & Control, 2022, 29(7): 126-131. doi: 10.3969/j.issn.1671-637X.2022.07.023
    [20]
    YILDIZ R, BARUT M, ZERDALI E. A comprehensive comparison of extended and unscented Kalman filters for speed-sensorless control applications of induction motors[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6423-6432. doi: 10.1109/TII.2020.2964876
    [21]
    YIN Z G, LI G Y, ZHANG Y Q, et al. Symmetric strong tracking extended Kalman filter based sensorless control of induction motor drives for modeling error reduction[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 650-662. doi: 10.1109/TII.2018.2810850
    [22]
    Fridman E, Shaked U A descriptor system approach to h control of linear time-delay systems[J]. IEEE Transactions on Automatic Control, 2002, 47(2): 253-270.
    [23]
    马静波, 杨洪耕. 自适应卡尔曼滤波在电力系统短期负荷预测中的应用[J]. 电网技术, 2005, 29(1): 75-79. doi: 10.3321/j.issn:1000-3673.2005.01.016

    MA J B, YANG H G. Application of adaptive Kalman filter in power system short-term load forecasting[J]. Power System Technology, 2005, 29(1): 75-79. doi: 10.3321/j.issn:1000-3673.2005.01.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(26) PDF Downloads(8) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return