
| Citation: | CAO Yue, YU Jianyang, WANG Sihang, LÜ Lingyun, CHEN Fu. Numerical Simulation of Flow Field Characteristics of Supersonic Jet in Natural Cavitating Tail Cavity[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 516-524. doi: 10.11993/j.issn.2096-3920.2024-0059 |
| [1] |
刘喜燕, 袁绪龙, 罗凯, 等. 带尾裙跨介质航行体高速斜入水实验研究[J]. 爆炸与冲击, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
Liu Xiyan, Yuan Xulong, Luo Kai, et al. Experimental study on high-velocity oblique water entry of a trans-media vehicle with tail-skirt[J]. Explosion and Shock Waves, 2023, 43(11): 108-120. doi: 10.11883/bzycj-2022-0509
|
| [2] |
赵小宇, 向敏, 张为华, 等. 超音速尾流作用下通气空泡稳定性及闭合位置数值研究[J]. 力学学报, 2021, 53(12): 3298-3309. doi: 10.6052/0459-1879-21-346
Zhao Xiaoyu, Xiang Min, Zhang Weihua, et al. Numerical study on the stability and closure position of ventailated cavity with a supersonic tail jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3298-3309. doi: 10.6052/0459-1879-21-346
|
| [3] |
许海雨, 罗凯, 黄闯, 等. 通气超空化对水下火箭发动机性能影响[J]. 哈尔滨工业大学学报, 2021, 53(6): 41-47.
Xu Haiyu, Luo Kai, Huang Chuang, et al. Influence of ventilated supercavitation on underwater rocket engine[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 41-47.
|
| [4] |
Kinzel P M, Krane H M, Kirschner N I, et al. A numerical assessment of the interaction of a supercavitating flow with a gas jet[J]. Ocean Engineering, 2017, 136304-313.
|
| [5] |
张春, 王宝寿. 水下航行体超声速射流与尾空泡耦合作用初期的流场特性[J]. 兵工学报, 2022, 43(7): 1685-1694.
Zhang Chun, Wang Baoshou. Flow field characteristics of the early-stage coupling interaction between supersonic jet and tail cavity of underwater vehicles[J]. Acta Armamentarii, 2022, 43(7): 1685-1694.
|
| [6] |
陈玮琪. 闭合在可压气体射流上的空泡数学模型[J]. 船舶力学, 2022, 26(12): 1737-1748. doi: 10.3969/j.issn.1007-7294.2022.12.001
Chen Weiqi. Mathematical model of cavity closure on a compressible gas jet[J]. Journal of Ship Mechanics, 2022, 26(12): 1737-1748. doi: 10.3969/j.issn.1007-7294.2022.12.001
|
| [7] |
党建军, 刘统军, 胥银. 尾部喷流对定常超空泡形态影响的数值研究[J]. 水下无人系统学报, 2007, 15(6): 50-52. doi: 10.3969/j.issn.1673-1948.2007.06.013
Dang Jianjun, Liu Tongjun, Xu Yin. Numerical simulation of influence of tail jet on steady supercavitation configuration[J]. Journal of Unmanned Undersea Systems, 2007, 15(6): 50-52. doi: 10.3969/j.issn.1673-1948.2007.06.013
|
| [8] |
胡勇, 陈鑫, 鲁传敬, 等. 水下航行体尾喷燃气与通气超空泡相互作用的研究[J]. 水动力学研究与进展A辑, 2008, 23(4): 438-445.
Hu Yong, Chen Xin, Lu Chuanjing, et al. Study on the interaction between ventilated cavitating flow and exhausted gas of an underwater vehicle[J]. Journal of Hydrodynamics, 2008, 23(4): 438-445.
|
| [9] |
舒畅, 宫兆新, 刘桦. 自然超空泡与尾喷流相互作用的数值模拟[J]. 力学季刊, 2023, 44(1): 15-30.
Shu Chang, Gong Zhaoxin, Liu Ye. Numerical simulation of interaction between natural supercavitationand base jet[J]. Chinese Quarterly of Mechanics, 2023, 44(1): 15-30.
|
| [10] |
赵小宇, 向敏, 刘波, 等. 通气空泡与超音速尾喷流耦合作用实验研究[J]. 国防科技大学学报, 2021, 43(5): 53-60. doi: 10.11887/j.cn.202105006
|
| [11] |
裴譞, 张宇文, 孟生, 等. 超空泡航行器尾喷管实验研究[J]. 应用力学学报, 2010, 27(3): 584-588, 650.
|
| [12] |
陈学军, 王瑞, 祁晓斌, 等. 燃气尾喷对水下航行体通气空泡形态及表面压力的影响[J]. 固体火箭技术, 2023, 46(4): 521-527. doi: 10.7673/j.issn.1006-2793.2023.04.05
|
| [13] |
许昊, 王聪, 陆宏志, 等. 水下超声速气体射流诱导尾空泡实验研究[J]. 物理学报, 2018, 67(1): 191-204. doi: 10.7498/aps.66.20171617
|
| [14] |
Moeny J M, Krane H M, Kirschner N I, et al. Jet-supercavity interaction: Insights from experiments[J]. Journal of Physics: Conference Series, 2015, 656(1): 012162.
|
| [15] |
Hunter C A. Experimental investigation of separated nozzle flows[J]. Journal of Propulsion & Power, 2004, 20(3): 527-532.
|
| [16] |
Hrubes J D. High-speed imaging of supercavitating underwater projectiles[J]. Experiments in Fluids, 2001, 30(1): 57-64. doi: 10.1007/s003480000135
|