• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 32 Issue 6
Jan  2025
Turn off MathJax
Article Contents
FENG Jiaqi, WANG Junpeng, CHEN Zhentao, LUO Zhengyuan, BAI Bofeng. Temperature Adaptability Analysis of Closed Cycle Using CO2-Based Mixed Working Fluid for Underwater Platforms[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1053-1062. doi: 10.11993/j.issn.2096-3920.2024-0051
Citation: FENG Jiaqi, WANG Junpeng, CHEN Zhentao, LUO Zhengyuan, BAI Bofeng. Temperature Adaptability Analysis of Closed Cycle Using CO2-Based Mixed Working Fluid for Underwater Platforms[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1053-1062. doi: 10.11993/j.issn.2096-3920.2024-0051

Temperature Adaptability Analysis of Closed Cycle Using CO2-Based Mixed Working Fluid for Underwater Platforms

doi: 10.11993/j.issn.2096-3920.2024-0051
  • Received Date: 2024-03-14
  • Accepted Date: 2024-05-13
  • Rev Recd Date: 2024-04-18
  • Available Online: 2024-11-08
  • The supercritical CO2 Brayton cycle system is an important development direction of underwater platform power technology. However, due to the low temperature in the deep sea which is far away from the critical temperature of CO2, the cycle system has temperature adaptability problems. This paper proposed the plan to use CO2-based mixed working fluid to improve cycle temperature adaptability and further optimize cycle performance. A simple recuperative closed cycle thermodynamic model was established, and the changes in critical parameters of CO2-based mixed working fluid with the type and mass fraction of added gas were analyzed. The influence of the compressor inlet state parameters on the thermodynamic properties of the closed cycle of CO2-based mixed working fluid was clarified. Besides, the influence of the pseudo-critical point position of the mixed working fluid on the pinch point and thermal inertia of the regenerator was discussed. The results show that the mixed working fluid cycle with low critical parameters can further expand the cycle temperature range and pressure ratio to improve the cycle thermodynamic performance. However, only expanding the temperature range and reducing the pressure ratio may have an adverse impact on it. Comprehensive consideration of cycle thermal efficiency, specific power, and pinch point and thermal inertia of regenerator, the maximum thermal efficiency of CO2 + Xe(CO2/Xe: 0.5/0.5)- transcritical Rankine cycle, CO2 + SF6(CO2/SF6: 0.9/0.1)-transcritical liquid Brayton cycle, CO2 + SF6(CO2/SF6: 0.5/0.5)-transcritical Rankine cycle can be increased by 3.79% than that of the supercritical CO2 Breton cycle, and the maximum specific power can be increased by 31.6%. The pinch point of the regenerator is located at the cold end, which does not increase its thermal inertia and does not slow down the system response speed.

     

  • loading
  • [1]
    潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44-51.

    PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 44-51.
    [2]
    邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.

    QIU Z M, MA Y, MENG X Y, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
    [3]
    ZHOU A, LI X, REN X, et al. Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery[J]. Energy, 2020, 210: 118562.
    [4]
    赵德材, 秦政, 刘惠民. 超临界二氧化碳布雷顿发电系统热力循环分析[J]. 能源与节能, 2018, 6: 2-6.

    ZHAO D C, QIN Z, LIU H M. Thermodynamic cycle analysis of supercritical carbon dioxide Brayton power generation system[J]. Energy and Energy Conservation, 2018, 6: 2-6.
    [5]
    FEHER E G. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2): 85-90. doi: 10.1016/0013-7480(68)90105-8
    [6]
    ANGELINO G. Real gas effects in carbon dioxide cycles[M]. Newyork: American Society of Mechanical Engineers, 1969.
    [7]
    WHITE M T, BIANCHI G, CHAI L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447.
    [8]
    HELD T J. Initial test results of a megawatt-class supercritical CO2 heat engine[C]//The 4th International Symposium on Supercritical CO2 Power Cycles. Pittsburgh: GE Global Research Center, 2014: 9-10.
    [9]
    WRIGHT S A, CONBOY T M, RADEL R F, et al. Modeling and experimental results for condensing supercritical CO2 power cycles[R]. CA, Unite States: USDOE, 2011.
    [10]
    JIANG Y, ZHAN L, TIAN X, et al. Thermodynamic performance comparison and optimization of SCO2 Brayton cycle, TCO2 Brayton cycle and TCO2 rankine cycle[J]. Journal of Thermal Science, 2023, 32(2): 611-627. doi: 10.1007/s11630-023-1708-z
    [11]
    LI Y, FENG J, ZHANG X, et al. Technical benefits of the subcritical inlet condition for high-speed CO2 centrifugal compressor in the advanced power-generation cycle[J]. Energy, 2023, 284: 128733. doi: 10.1016/j.energy.2023.128733
    [12]
    LIU Y, ZHAO Y, YANG Q, et al. Thermodynamic comparison of CO2 power cycles and their compression processes[J]. Case Studies in Thermal Engineering, 2020, 21: 100712. doi: 10.1016/j.csite.2020.100712
    [13]
    PAN L, LI B, SHI W, et al. Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy[J]. Applied Energy, 2019, 253: 113608. doi: 10.1016/j.apenergy.2019.113608
    [14]
    HABIBOLLAHZADE A, PETERSEN K, ALIAHMADI M, et al. Comparative thermoeconomic analysis of geothermal energy recovery via super/transcritical CO2 and subcritical organic Rankine cycles[J]. Energy Conversion and Management, 2022, 251: 115008. doi: 10.1016/j.enconman.2021.115008
    [15]
    WU P, MA Y, GAO C, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. doi: 10.1016/j.nucengdes.2020.110767
    [16]
    LIU W, XU X, CHEN F, et al. A review of research on the closed thermodynamic cycles of ocean thermal energy conversion[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109581. doi: 10.1016/j.rser.2019.109581
    [17]
    WANG G, YANG Y, WANG S, et al. Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review[J]. Applied Energy, 2020, 278: 115752. doi: 10.1016/j.apenergy.2020.115752
    [18]
    SON S, HEO J Y, LEE J I. Prediction of inner pinch for supercritical CO2 heat exchanger using artificial neural network and evaluation of its impact on cycle design[J]. Energy Conversion and Management, 2018, 163: 66-73. doi: 10.1016/j.enconman.2018.02.044
    [19]
    WANG R, WANG X, TIAN H, et al. Dynamic performance comparison of CO2 mixture transcritical power cycle systems with variable configurations for engine waste heat recovery[J]. Energies, 2019, 13(1): 1-24. doi: 10.3390/en13010032
    [20]
    WHITE M T, BIANCHI G, CHAI L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. doi: 10.1016/j.applthermaleng.2020.116447
    [21]
    王典乐, 黄彦平, 殷凯凯, 等. 低温热阱环境下超临界二氧化碳动力循环概念设计研究[J]. 原子能科学技术, 2023, 57(9): 1681-1690.

    WANG D L, HUANG Y P, YIN K K, et al. Optimization design research of supercritical carbon dioxide power cycle under low-temperature heat sink environment[J]. Atomic Energy Science and Technology, 2023, 57(9): 1681-1690.
    [22]
    LEMMON E W, BELL I H, HUBER M, et al. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 10.0, national institute of standards and technology[DB/OL]. [S.l.]: NIST NSRDS, 2013[2015-01-01]. https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
    [23]
    FENG J, WANG J, CHEN Z, et al. Thermo-economic analysis of regenerative supercritical CO2 Brayton cycle considering turbomachinery leakage flow[J]. Energy, 2024, 290: 130098. doi: 10.1016/j.energy.2023.130098
    [24]
    HAQ M Z, AYON M S R, NOUMAN M W B, et al. Thermodynamic analysis and optimisation of a novel transcritical CO2 cycle[J]. Energy Conversion and Management, 2022, 273: 116407. doi: 10.1016/j.enconman.2022.116407
    [25]
    SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. doi: 10.1021/cr068357u
    [26]
    杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 21-29.

    YANG F F, LIU H T, YANG Z, et al. Thermophysical properties of working fluid of supercritical carbon dioxide cycle: Research progress[J]. Thermal Power Generation, 2020, 49(10): 21-29.
    [27]
    LI H, YAN J. Impacts of equations of state(EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage(CCS) processes[J]. Applied Energy, 2009, 86(12): 2760-2770. doi: 10.1016/j.apenergy.2009.04.013
    [28]
    MAZZOCCOLI M, BOSIO B, ARATO E, et al. Comparison of equations-of-state with PρT experimental data of binary mixtures rich in CO2 under the conditions of pipeline transport[J]. The Journal of Supercritical Fluids, 2014, 95: 474-490. doi: 10.1016/j.supflu.2014.09.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(124) PDF Downloads(27) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return