Citation: | FENG Jiaqi, WANG Junpeng, CHEN Zhentao, LUO Zhengyuan, BAI Bofeng. Temperature Adaptability Analysis of Closed Cycle Using CO2-Based Mixed Working Fluid for Underwater Platforms[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1053-1062. doi: 10.11993/j.issn.2096-3920.2024-0051 |
[1] |
潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44-51.
PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2): 44-51.
|
[2] |
邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.
QIU Z M, MA Y, MENG X Y, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
|
[3] |
ZHOU A, LI X, REN X, et al. Improvement design and analysis of a supercritical CO2/transcritical CO2 combined cycle for offshore gas turbine waste heat recovery[J]. Energy, 2020, 210: 118562.
|
[4] |
赵德材, 秦政, 刘惠民. 超临界二氧化碳布雷顿发电系统热力循环分析[J]. 能源与节能, 2018, 6: 2-6.
ZHAO D C, QIN Z, LIU H M. Thermodynamic cycle analysis of supercritical carbon dioxide Brayton power generation system[J]. Energy and Energy Conservation, 2018, 6: 2-6.
|
[5] |
FEHER E G. The supercritical thermodynamic power cycle[J]. Energy Conversion, 1968, 8(2): 85-90. doi: 10.1016/0013-7480(68)90105-8
|
[6] |
ANGELINO G. Real gas effects in carbon dioxide cycles[M]. Newyork: American Society of Mechanical Engineers, 1969.
|
[7] |
WHITE M T, BIANCHI G, CHAI L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447.
|
[8] |
HELD T J. Initial test results of a megawatt-class supercritical CO2 heat engine[C]//The 4th International Symposium on Supercritical CO2 Power Cycles. Pittsburgh: GE Global Research Center, 2014: 9-10.
|
[9] |
WRIGHT S A, CONBOY T M, RADEL R F, et al. Modeling and experimental results for condensing supercritical CO2 power cycles[R]. CA, Unite States: USDOE, 2011.
|
[10] |
JIANG Y, ZHAN L, TIAN X, et al. Thermodynamic performance comparison and optimization of SCO2 Brayton cycle, TCO2 Brayton cycle and TCO2 rankine cycle[J]. Journal of Thermal Science, 2023, 32(2): 611-627. doi: 10.1007/s11630-023-1708-z
|
[11] |
LI Y, FENG J, ZHANG X, et al. Technical benefits of the subcritical inlet condition for high-speed CO2 centrifugal compressor in the advanced power-generation cycle[J]. Energy, 2023, 284: 128733. doi: 10.1016/j.energy.2023.128733
|
[12] |
LIU Y, ZHAO Y, YANG Q, et al. Thermodynamic comparison of CO2 power cycles and their compression processes[J]. Case Studies in Thermal Engineering, 2020, 21: 100712. doi: 10.1016/j.csite.2020.100712
|
[13] |
PAN L, LI B, SHI W, et al. Optimization of the self-condensing CO2 transcritical power cycle using solar thermal energy[J]. Applied Energy, 2019, 253: 113608. doi: 10.1016/j.apenergy.2019.113608
|
[14] |
HABIBOLLAHZADE A, PETERSEN K, ALIAHMADI M, et al. Comparative thermoeconomic analysis of geothermal energy recovery via super/transcritical CO2 and subcritical organic Rankine cycles[J]. Energy Conversion and Management, 2022, 251: 115008. doi: 10.1016/j.enconman.2021.115008
|
[15] |
WU P, MA Y, GAO C, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368: 110767. doi: 10.1016/j.nucengdes.2020.110767
|
[16] |
LIU W, XU X, CHEN F, et al. A review of research on the closed thermodynamic cycles of ocean thermal energy conversion[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109581. doi: 10.1016/j.rser.2019.109581
|
[17] |
WANG G, YANG Y, WANG S, et al. Ocean thermal energy application technologies for unmanned underwater vehicles: A comprehensive review[J]. Applied Energy, 2020, 278: 115752. doi: 10.1016/j.apenergy.2020.115752
|
[18] |
SON S, HEO J Y, LEE J I. Prediction of inner pinch for supercritical CO2 heat exchanger using artificial neural network and evaluation of its impact on cycle design[J]. Energy Conversion and Management, 2018, 163: 66-73. doi: 10.1016/j.enconman.2018.02.044
|
[19] |
WANG R, WANG X, TIAN H, et al. Dynamic performance comparison of CO2 mixture transcritical power cycle systems with variable configurations for engine waste heat recovery[J]. Energies, 2019, 13(1): 1-24. doi: 10.3390/en13010032
|
[20] |
WHITE M T, BIANCHI G, CHAI L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. doi: 10.1016/j.applthermaleng.2020.116447
|
[21] |
王典乐, 黄彦平, 殷凯凯, 等. 低温热阱环境下超临界二氧化碳动力循环概念设计研究[J]. 原子能科学技术, 2023, 57(9): 1681-1690.
WANG D L, HUANG Y P, YIN K K, et al. Optimization design research of supercritical carbon dioxide power cycle under low-temperature heat sink environment[J]. Atomic Energy Science and Technology, 2023, 57(9): 1681-1690.
|
[22] |
LEMMON E W, BELL I H, HUBER M, et al. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 10.0, national institute of standards and technology[DB/OL]. [S.l.]: NIST NSRDS, 2013[2015-01-01]. https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport
|
[23] |
FENG J, WANG J, CHEN Z, et al. Thermo-economic analysis of regenerative supercritical CO2 Brayton cycle considering turbomachinery leakage flow[J]. Energy, 2024, 290: 130098. doi: 10.1016/j.energy.2023.130098
|
[24] |
HAQ M Z, AYON M S R, NOUMAN M W B, et al. Thermodynamic analysis and optimisation of a novel transcritical CO2 cycle[J]. Energy Conversion and Management, 2022, 273: 116407. doi: 10.1016/j.enconman.2022.116407
|
[25] |
SAKAKURA T, CHOI J C, YASUDA H. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. doi: 10.1021/cr068357u
|
[26] |
杨富方, 刘航滔, 杨震, 等. 超临界二氧化碳循环工质热物性研究进展[J]. 热力发电, 2020, 49(10): 21-29.
YANG F F, LIU H T, YANG Z, et al. Thermophysical properties of working fluid of supercritical carbon dioxide cycle: Research progress[J]. Thermal Power Generation, 2020, 49(10): 21-29.
|
[27] |
LI H, YAN J. Impacts of equations of state(EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage(CCS) processes[J]. Applied Energy, 2009, 86(12): 2760-2770. doi: 10.1016/j.apenergy.2009.04.013
|
[28] |
MAZZOCCOLI M, BOSIO B, ARATO E, et al. Comparison of equations-of-state with P–ρ–T experimental data of binary mixtures rich in CO2 under the conditions of pipeline transport[J]. The Journal of Supercritical Fluids, 2014, 95: 474-490. doi: 10.1016/j.supflu.2014.09.047
|