• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
WANG Yuyang, JI Fang, LU Shaoqing, LI Guonan. Current Status of Research on new Marine Unmanned Equipment Detection based on Multi-physics Fields[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0048
Citation: WANG Yuyang, JI Fang, LU Shaoqing, LI Guonan. Current Status of Research on new Marine Unmanned Equipment Detection based on Multi-physics Fields[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0048

Current Status of Research on new Marine Unmanned Equipment Detection based on Multi-physics Fields

doi: 10.11993/j.issn.2096-3920.2024-0048
  • Received Date: 2024-03-09
  • Accepted Date: 2024-05-14
  • Rev Recd Date: 2024-04-22
  • Available Online: 2024-11-14
  • In recent years, the number of marine unmanned systems has increased dramatically. The equipments represented by Unmanned Underwater Vehicle (UUV) and Unmanned Surface Vessel (USV) have the characteristics of large number, small size, high degree of intelligence, and wide range of tasks, and so on. Future naval warfare missions will use lots of unmanned equipments, so the detection of marine unmanned intelligent equipment technology has become one of the key technologies in the armament and scientific research of all countries. Based on the categorization of different marine vehicles, this paper provides an overview of the detection methods of marine intelligent unmanned equipment in recent years in various countries, which also covers the information sources of new types of physical fields, such as light and electromagnetism. The feasibility of multi-system collaborative detection and multi-information omni-directional sensing techniques is analyzed, while the current research status of deep intelligent line spectrum detection is described. In the future, the detection of marine unmanned intelligent equipment will develop in intelligence, clustering, high precision, robustness and real-time. Further improving the level of underwater target recognition will be an important research direction.

     

  • loading
  • [1]
    杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-386.

    YANG Y X, HAN Y N, ZHAO R Q, et al. Ocean acoustic target detection technologies: A review[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-386.
    [2]
    王自发, 朱克强, 张天宇, 等. 拖曳线列阵声呐的研究现状与发展趋势(英文)[J]. 舰船科学技术, 2013, 35(7): 1-7. doi: 10.3404/j.issn.1672-7649.2013.07.001

    WANG Z F, ZHU K Q, ZHANG T Y, et al. Research status and development trend of towed line array sonar[J]. Ship Science and Technology, 2013, 35(7): 1-7. doi: 10.3404/j.issn.1672-7649.2013.07.001
    [3]
    王净, 战凯. 反潜直升机吊放声纳搜索效率模型研究[J]. 舰船电子工程, 2014, 34(3): 159-161.

    WANG J, ZHAN K. Research on search efficiency model of anti-submarine helicopter's dipping sonar[J]. Ship Electronic Engineering, 2014, 34(3): 159-161.
    [4]
    王家鑫. 反潜无人水面艇及其声呐设备[J]. 声学与电子工程, 2015(2): 46-49. doi: 10.3969/j.issn.2096-2657.2015.02.013

    WANG J X. Anti-submarine unmanned surface vehicle and its sonar equipment[J]. Acoustics and Electronic Engineering, 2015(2): 46-49. doi: 10.3969/j.issn.2096-2657.2015.02.013
    [5]
    窦强, 阴启玉, 梁立. 基于吊放声呐的无人艇搜潜任务规划算法[J]. 指挥控制与仿真, 2023, 45(2): 9-16.

    DOU Q, YIN Q Y, LIANG L. Task planning algorithm for unmanned surface vehicle's anti-submarine search based on dipping sonar[J]. Command Control and Simulation, 2023, 45(2): 9-16.
    [6]
    李向阳, 陈立纲, 姜岳. 无人水面艇声呐装备现状与发展趋势[J]. 声学与电子工程, 2022(3): 1-7. doi: 10.3969/j.issn.2096-2657.2022.03.001

    LI X Y, CHEN L G, JIANG Y. Current status and development trends of sonar equipment for unmanned surface vehicles[J]. Acoustics and Electronic Engineering, 2022(3): 1-7. doi: 10.3969/j.issn.2096-2657.2022.03.001
    [7]
    王涛. 无人潜航器技术应用的前景[J]. 防务视点, 2016(10): 54-57.

    WANG T. Prospects for the application of unmanned underwater vehicles technology[J]. Defense Perspective, 2016(10): 54-57.
    [8]
    GAO L, GU H T, XU H L. A novel autonomous inspection system of USV for submarine buried pipeline[J]. Marine Technology Society Journal, 2019, 53(3): 90-95. doi: 10.4031/MTSJ.53.3.09
    [9]
    WANDETO J, GU N, ZHOU Z, et al. A fusion algorithm of object detection and tracking for unmanned surface vehicles[J]. Frontiers in Neurorobotics, 2022(16): 808147.
    [10]
    ZOU X, XIAO C, ZHAN W, et al. A novel water-shore-line detection method for USV autonomous navigation[J]. Sensors, 2020, 20(6): 1682. doi: 10.3390/s20061682
    [11]
    BOVCON B, MUHOVIČ J, VRANAC D, et al. MODS——A USV-oriented object detection and obstacle segmentation benchmark[EB/OL]. (2021-05-05). https://arxiv.org/abs/2105.02359?context=cs.
    [12]
    HAN J, CHO Y, KIM J, et al. Autonomous collision detection and avoidance for ARAGON USV: Development and field tests[J]. Journal of Field Robotics, 2020(6): 37.
    [13]
    GAFUROV S A, KLOCHKOV E V. Autonomous unmanned underwater vehicles development tendencies[J], Procedia Engineering 2015(106): 141-148.
    [14]
    金克帆, 王鸿东, 易宏, 等. 海上无人装备关键技术与智能演进展望[J]. 中国舰船研究, 2018, 13(6): 1-8.

    JIN K F, WANG H D, YI H, et al. Key techniques and evolution of intelligent maritime unmanned vehicles[J]. Chinese Journal of Ship Research, 2018, 13(6): 1-8.
    [15]
    ZHANG G, HUANG H, QIN H, et al. A novel adaptive second order sliding mode path followingcontrol for a portable AUV[J]. Ocean Engineering, 2018, 151(MAR.1): 82-92.
    [16]
    侯海平, 付春龙, 赵楠, 等. 智能自主式水下航行器技术发展研究[J]. 舰船科学技术, 2022, 44(1): 86-90. doi: 10.3404/j.issn.1672-7649.2022.01.017

    HOU H P, FU C L, ZHAO N, et al. Research on the development of intelligent autonomous underwater vehicles[J]. Ship Science and Technology, 2022, 44(1): 86-90. doi: 10.3404/j.issn.1672-7649.2022.01.017
    [17]
    任宇飞, 李宇, 黄海宁. 能量值和方位信息结合的粒子滤波算法[J]. 哈尔滨工程大学学报, 2017, 38(7): 1143-1150. doi: 10.11990/jheu.201604063

    REN Y F, LI Y, HUANG H N. A particle filter algorithm combining energy value and azimuth information[J]. Journal of Marine Science and Application, 2017, 38(7): 1143-1150. doi: 10.11990/jheu.201604063
    [18]
    闫敬, 李文飚, 杨晛, 等. 融合Q学习与PID控制器的AUV跟踪控制[J]. 水下无人系统学报, 2021, 29(5): 565-574.

    YAN J, LI W B, YANG X, et al. Tracking control of auv based on the fusion of Q-learning and PID controller[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 565-574.
    [19]
    李峥, 李宇, 黄勇, 等. 水下目标自主连续跟踪与定位算法研究[J]. 仪器仪表学报, 2012, 33(3): 520-528. doi: 10.3969/j.issn.0254-3087.2012.03.006

    LI Z, LI Y, HUANG Y, et al. Research on autonomous continuous tracking and localization algorithm for underwater targets[J]. Chinese Journal of Scientific Instrument, 2012, 33(3): 520-528. doi: 10.3969/j.issn.0254-3087.2012.03.006
    [20]
    尤岳, 周涛, 陈科, 等. 水下无人航行器探潜能力建模与仿真分析[J]. 舰船科学技术, 2021, 43(19): 66-71.

    YOU Y, ZHOU T, CHEN K, et al. Modeling and simulation analysis of the submarine detection capability of underwater unmanned vehicles[J]. Ship Science and Technology, 2021, 43(19): 66-71.
    [21]
    ZHANG T, WAN L, PANG Y, et al. Object detection and tracking method of AUV based on acoustic vision[C]//2012 Oceans. Hampton Roads, VA, USA: IEEE, 2013.
    [22]
    LEI B, HE Z, YANG Y, et al. Experimental demonstration of forward scattering barrier for AUV intruder[J]. Applied Acoustics, 2022, 190: 108635. doi: 10.1016/j.apacoust.2022.108635
    [23]
    DING W, CAO H, GUO H, et al. Investigation on optimal path for submarine search by an unmanned underwater vehicle[J]. Computers and Electrical Engineering, 2019, 79: 106468. doi: 10.1016/j.compeleceng.2019.106468
    [24]
    LI L, LI Y, YUE C, et al. Real-time underwater target detection for AUV using side scan sonar images based on deep learning[J]. Applied Ocean Research, 2023, 138: 103630. doi: 10.1016/j.apor.2023.103630
    [25]
    SEIDEL M, FREY T, GREINERT J. Underwater UXO detection using magnetometry on hovering AUVs[J]. Journal of Field Robotics, 2023: 848-861.
    [26]
    RONG S, XU Y. Motion parameter estimation of AUV based on underwater acoustic Doppler frequency measured by single hydrophone[J]. Frontiers in Marine Science, 2022, 9: 1019385. doi: 10.3389/fmars.2022.1019385
    [27]
    MATSUMOTO H, STALIN S E, EMBLEY R W, et al. Hydroacoustics of a submarine eruption in the Northeast Lau Basin using an acoustic glider[C]//OCEANS 2010. Seattle, WA, USA: IEEE, 2010.
    [28]
    ONR. Liberdade XRay Advanced Underwater Gilder[EB/OL]. (2006-04-19)[2019-10-31]. https://commons.Wikimedia.org/wiki/File:Liberdade_XRay_underwater_glider.jpg.
    [29]
    D'SPAIN G, JENKINS S, ZIMMERMAN R, et al. Underwater acoustic measurements with the Liberdade/X-Ray flying wing glider[J]. Journal of the Acoustical Society of America, 2005, 117(4): 2624.
    [30]
    张小川, 王超, 孙芹东, 等. 水下滑翔机对矢量水听器测向影响研究[C]//中国声学学会2017年全国声学学术会议. 哈尔滨: 中国声学学会.
    [31]
    王超, 孙芹东, 王文龙, 等. 水下目标警戒滑翔机声学系统设计与实现[C]//2018苏鲁黑浙四省声学技术学术会议. 青岛: 苏鲁黑浙四省声学学会, 2018.
    [32]
    刘婧, 闫建峰, 潘小群, 等. 无人机集群探潜进展研究[J]. 舰船科学技术, 2021, 43(S1): 138-141.

    LIU J, YAN J, PAN X, et al. Progress study on UAV cluster dive exploration[J]. Ship Science and Technology, 2021, 43(S1): 138-141.
    [33]
    尹晓东, 刘清宇, 徐江. 国外航空声学探潜装备研究进展[J]. 舰船科学技术, 2008, 30(6): 172-175. doi: 10.3404/j.issn.1672-7649.2008.06.039

    YIN X, LIU Q, XU J. Research Progress of Foreign Aeroacoustic Diving Equipment[J]. Ship Science and Technology, 2008, 30(6): 172-175. doi: 10.3404/j.issn.1672-7649.2008.06.039
    [34]
    成建波. 基于声呐浮标的大型无人机搜潜效能分析[J]. 声学与电子工程, 2023(1): 37-40. doi: 10.3969/j.issn.2096-2657.2023.01.08

    CHENG J. Analysis of the effectiveness of large-scale unmanned aerial vehicle search and diving based on sonobuoy[J]. Acoustic and Electronic Engineering, 2023(1): 37-40. doi: 10.3969/j.issn.2096-2657.2023.01.08
    [35]
    吴涛, 冯伟强, 张昊. 无人机蜂群对海作战概念模型研究[J]. 指挥控制与仿真, 2022, 44(2): 7-11. doi: 10.3969/j.issn.1673-3819.2022.02.002

    WU T, FENG W, ZHANG H. Research on the conceptual model of UAV swarm-to-sea combat[J]. Command Control and Simulation, 2022, 44(2): 7-11. doi: 10.3969/j.issn.1673-3819.2022.02.002
    [36]
    SUJIT P, SARIPALLI S. An empirical evaluation of co-ordination strategies for an AUV and UAV[J]. Journal of Intelligent and Robotic Systems, 2013, 70(1-4): 373-384. doi: 10.1007/s10846-012-9728-z
    [37]
    HE Y. Mission-driven autonomous perception and fusion based on UAV swarm[J]. Chinese Journal of Aeronautics, 2020: 2831-2834.
    [38]
    BOUKEZZOULA R, COQUIN D, NGUYEN T, et al. Multi-sensor information fusion: Combination of fuzzy systems and evidence theory approaches in color recognition for the NAO humanoid robot[J]. Robotics and Autonomous Systems, 2018, 100: 302-316. doi: 10.1016/j.robot.2017.12.002
    [39]
    BOSMAN H, IACCA G, TEJADA A, et al. Spatial anomaly detection in sensor networks using neighborhood information[J]. Information Fusion, 2017, 33: 41-56. doi: 10.1016/j.inffus.2016.04.007
    [40]
    苏金涛, 张华, 肖自兵, 等. 无人集群协同反潜应用研究[J]. 舰船科学技术, 2020, 42(17): 157-161. doi: 10.3404/j.issn.1672-7649.2020.09.030

    SU J, ZHANG H, XIAO Z, et al. Research on the application of unmanned cluster cooperative anti-submarine[J]. Ship Science and Technology, 2020, 42(17): 157-161. doi: 10.3404/j.issn.1672-7649.2020.09.030
    [41]
    钱东. 美国未来的大型UUV—MANTA[J]. 鱼雷技术, 2003, 10(1): 47-50, 55-57.

    QIAN D. The future large-scale UUV-MANTA of the United States[J]. Torpedo Technology, 2003, 10(1): 47-50, 55-57.
    [42]
    钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273-282. doi: 10.11993/j.issn.2096-3920.2018.04.001

    ZHONG H, LI G, SONG L et al. An overview of the development of foreign large unmanned underwater vehicles[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273-282. doi: 10.11993/j.issn.2096-3920.2018.04.001
    [43]
    许彦伟, 薛勐, 刘明刚, 等. 多无人水下航行器协同探测声呐宽带波形设计与性能分析[J]. 电子与信息学报, 2023, 45(10): 3796-3804. doi: 10.11999/JEIT221265

    XU Y, XUE M, LIU M et al. Broadband waveform design and performance analysis of multi-unmanned underwater vehicle cooperative detection sonar[J]. Journal of Electronics and Information, 2023, 45(10): 3796-3804. doi: 10.11999/JEIT221265
    [44]
    DARPA. Mobile off-board clandestine communications and approach(MOCCA)[EB/OL]. Broad Agency Announcement. [2016-01-24]. https://www.darpa.mil/program/mobile-offboard-clandestine-communications-and-approach.
    [45]
    NAVSEA. Annual Naval Technology Exercise(ANTX) 2016 Overview[EB/OL]. [2016-08-16]. https://www.navsea.navy.mil/ANTX2016Participants/.
    [46]
    程锦房, 张伽伟, 姜润翔, 等. 水下电磁探测技术的发展现状[J]. 数字海洋与水下攻防, 2019, 2(4): 45-49.

    CHENG J, ZHANG J, JIANG R et al. Development status of underwater electromagnetic detection technology[J]. Digital Ocean and Underwater Attack and Defense, 2019, 2(4): 45-49.
    [47]
    谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究, 2021, 16(1): 7-17, 31.

    XIE W, TAO H, GONG J et al. Development status and key technology research progress of maritime unmanned system cluster[J]. China Ship Research, 2021, 16(1): 7-17, 31.
    [48]
    GAO J, LI P, CHEN Z, et al. A survey on deep learning for multimodal data fusion[J]. Neural Computation, 2020, 32(1): 1-36. doi: 10.1162/neco_a_01246
    [49]
    冯西安, 寇思玮, 岳玲. 水下移动平台网络化协同探测技术发展[J]. 应用声学, 2019, 38(4): 509-515.

    FENG X, KOU S, YUE L. Development of networked cooperative detection technology for underwater mobile platforms[J]. Applied Acoustics, 2019, 38(4): 509-515.
    [50]
    孙宁, 马沙沙. 自主飞行声呐浮标关键技术及作战样式分析[J]. 中国舰船研究, 2021, 16(6): 109-115.

    SUN N, MA S. Analysis of key technology and operational style of autonomous flying sonobuoy[J]. China Ship Research, 2021, 16(6): 109-115.
    [51]
    VILLA J, AALTONEN J, VIRTA S, et al. A co-operative autonomous offshore system for target detection using multi-sensor technology[J]. Remote Sensing, 2020, 12(24): 4106. doi: 10.3390/rs12244106
    [52]
    CHAMPION B, JOORDENS M. Underwater swarm robotics review[C]//System of Systems Engineering Conference. IEEE, San Antonio, TX, USA, 2015: 111-116.
    [53]
    陈双, 刘韬. 国外海洋卫星发展综述[J]. 国际太空, 2014(7): 29-36.

    CHEN S, LIU T. Overview of the development of foreign ocean satellites[J]. International Space, 2014(7): 29-36.
    [54]
    林明森, 张有广, 袁欣哲. 海洋遥感卫星发展历程与趋势展望[J]. 海洋学报, 2015, 37(1): 1-10. doi: 10.3969/j.issn.0253-4193.2015.01.001

    LIN M, ZHANG Y, YUAN X. Development history and trend outlook of ocean remote sensing satellites[J]. Journal of Oceanography, 2015, 37(1): 1-10. doi: 10.3969/j.issn.0253-4193.2015.01.001
    [55]
    段瑞洋, 王景璟, 杜军, 等. 面向“三全”信息覆盖的新型海洋信息网络[J]. 通信学报, 2019, 40(4): 10-20. doi: 10.11959/j.issn.1000-436x.2019051

    DUAN R, WANG J, DU J et al. A new type of marine information network for “three full” information coverage[J]. Journal of Communication, 2019, 40(4): 10-20. doi: 10.11959/j.issn.1000-436x.2019051
    [56]
    高建文, 肖双爱, 虞志刚, 等. 面向海洋全方位综合感知的一体化通信网络[J]. 中国电子科学研究院学报, 2020, 15(4): 343-349, 363. doi: 10.3969/j.issn.1673-5692.2020.04.008

    GAO J, XIAO S, YU Z et al. An integrated communication network for all-round comprehensive sensing of the ocean[J]. Journal of China Academy of Electronic Science, 2020, 15(4): 343-349, 363. doi: 10.3969/j.issn.1673-5692.2020.04.008
    [57]
    刘惟恒, 罗阳, 于均杰, 等. 新概念多无人机协同探潜技术发展趋势分析[J]. 无人系统技术, 2020, 3(2): 9-13.

    LIU W, LUO Y, YU J et al. Analysis on the development trend of new concept multi-UAV cooperative diving technology[J]. Unmanned Systems Technology, 2020, 3(2): 9-13.
    [58]
    程锦房, 张伽伟, 姜润翔, 等. 水下电磁探测技术的发展现状[J]. 数字海洋与水下攻防, 2019, 2(4): 45-49.

    CHENG J, ZHANG J, JIANG R et al. Development status of underwater electromagnetic detection technology[J]. Digital Ocean and Underwater Attack and Defense, 2019, 2(4): 45-49.
    [59]
    YANG X, SAMSUDIN S, WANG Y, et al. Application of target detection method based on convolutional neural network in sustainable outdoor education[J]. Sustainability, 2023, 15(3): 2542. doi: 10.3390/su15032542
    [60]
    张昊. 水声目标辐射噪声信号增强与特征辨识技术研究[D]. 南京: 东南大学, 2022.
    [61]
    RIZZINI D, KALLASI F, OLEARI F, et al. Investigation of vision-based underwater object detection with multiple datasets[J]. International Journal of Advanced Robotic Systems, 2015, 12(6): 1-13.
    [62]
    WANG Z, ZHANG S. Sonar Image detection based on Multi-Scale Multi-Column Convolution Neural Networks[J]. IEEE Access, 2019, 7: 160755-160767. doi: 10.1109/ACCESS.2019.2951443
    [63]
    NEUPANE D, SEOK J. A review on deep learning-based approaches for automatic sonar target recognition[J]. Electronics, 2020.
    [64]
    JI F, NI J, LI G, et al. Underwater acoustic target recognition based on deep residual attention convolutional neural network[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1626. doi: 10.3390/jmse11081626
    [65]
    JI F, LI G, LU, S, et al. Research on a feature enhancement extraction method for underwater targets based on deep autoencoder networks[J]. Applied Sciences, 2024, 14: 1341. doi: 10.3390/app14041341
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(48) PDF Downloads(15) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return