Citation: | WANG Yuyang, JI Fang, LU Shaoqing, LI Guonan. Current Status of Research on new Marine Unmanned Equipment Detection based on Multi-physics Fields[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0048 |
[1] |
杨益新, 韩一娜, 赵瑞琴, 等. 海洋声学目标探测技术研究现状和发展趋势[J]. 水下无人系统学报, 2018, 26(5): 369-386.
YANG Y X, HAN Y N, ZHAO R Q, et al. Ocean acoustic target detection technologies: A review[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 369-386.
|
[2] |
王自发, 朱克强, 张天宇, 等. 拖曳线列阵声呐的研究现状与发展趋势(英文)[J]. 舰船科学技术, 2013, 35(7): 1-7. doi: 10.3404/j.issn.1672-7649.2013.07.001
WANG Z F, ZHU K Q, ZHANG T Y, et al. Research status and development trend of towed line array sonar[J]. Ship Science and Technology, 2013, 35(7): 1-7. doi: 10.3404/j.issn.1672-7649.2013.07.001
|
[3] |
王净, 战凯. 反潜直升机吊放声纳搜索效率模型研究[J]. 舰船电子工程, 2014, 34(3): 159-161.
WANG J, ZHAN K. Research on search efficiency model of anti-submarine helicopter's dipping sonar[J]. Ship Electronic Engineering, 2014, 34(3): 159-161.
|
[4] |
王家鑫. 反潜无人水面艇及其声呐设备[J]. 声学与电子工程, 2015(2): 46-49. doi: 10.3969/j.issn.2096-2657.2015.02.013
WANG J X. Anti-submarine unmanned surface vehicle and its sonar equipment[J]. Acoustics and Electronic Engineering, 2015(2): 46-49. doi: 10.3969/j.issn.2096-2657.2015.02.013
|
[5] |
窦强, 阴启玉, 梁立. 基于吊放声呐的无人艇搜潜任务规划算法[J]. 指挥控制与仿真, 2023, 45(2): 9-16.
DOU Q, YIN Q Y, LIANG L. Task planning algorithm for unmanned surface vehicle's anti-submarine search based on dipping sonar[J]. Command Control and Simulation, 2023, 45(2): 9-16.
|
[6] |
李向阳, 陈立纲, 姜岳. 无人水面艇声呐装备现状与发展趋势[J]. 声学与电子工程, 2022(3): 1-7. doi: 10.3969/j.issn.2096-2657.2022.03.001
LI X Y, CHEN L G, JIANG Y. Current status and development trends of sonar equipment for unmanned surface vehicles[J]. Acoustics and Electronic Engineering, 2022(3): 1-7. doi: 10.3969/j.issn.2096-2657.2022.03.001
|
[7] |
王涛. 无人潜航器技术应用的前景[J]. 防务视点, 2016(10): 54-57.
WANG T. Prospects for the application of unmanned underwater vehicles technology[J]. Defense Perspective, 2016(10): 54-57.
|
[8] |
GAO L, GU H T, XU H L. A novel autonomous inspection system of USV for submarine buried pipeline[J]. Marine Technology Society Journal, 2019, 53(3): 90-95. doi: 10.4031/MTSJ.53.3.09
|
[9] |
WANDETO J, GU N, ZHOU Z, et al. A fusion algorithm of object detection and tracking for unmanned surface vehicles[J]. Frontiers in Neurorobotics, 2022(16): 808147.
|
[10] |
ZOU X, XIAO C, ZHAN W, et al. A novel water-shore-line detection method for USV autonomous navigation[J]. Sensors, 2020, 20(6): 1682. doi: 10.3390/s20061682
|
[11] |
BOVCON B, MUHOVIČ J, VRANAC D, et al. MODS——A USV-oriented object detection and obstacle segmentation benchmark[EB/OL]. (2021-05-05). https://arxiv.org/abs/2105.02359?context=cs.
|
[12] |
HAN J, CHO Y, KIM J, et al. Autonomous collision detection and avoidance for ARAGON USV: Development and field tests[J]. Journal of Field Robotics, 2020(6): 37.
|
[13] |
GAFUROV S A, KLOCHKOV E V. Autonomous unmanned underwater vehicles development tendencies[J], Procedia Engineering 2015(106): 141-148.
|
[14] |
金克帆, 王鸿东, 易宏, 等. 海上无人装备关键技术与智能演进展望[J]. 中国舰船研究, 2018, 13(6): 1-8.
JIN K F, WANG H D, YI H, et al. Key techniques and evolution of intelligent maritime unmanned vehicles[J]. Chinese Journal of Ship Research, 2018, 13(6): 1-8.
|
[15] |
ZHANG G, HUANG H, QIN H, et al. A novel adaptive second order sliding mode path followingcontrol for a portable AUV[J]. Ocean Engineering, 2018, 151(MAR.1): 82-92.
|
[16] |
侯海平, 付春龙, 赵楠, 等. 智能自主式水下航行器技术发展研究[J]. 舰船科学技术, 2022, 44(1): 86-90. doi: 10.3404/j.issn.1672-7649.2022.01.017
HOU H P, FU C L, ZHAO N, et al. Research on the development of intelligent autonomous underwater vehicles[J]. Ship Science and Technology, 2022, 44(1): 86-90. doi: 10.3404/j.issn.1672-7649.2022.01.017
|
[17] |
任宇飞, 李宇, 黄海宁. 能量值和方位信息结合的粒子滤波算法[J]. 哈尔滨工程大学学报, 2017, 38(7): 1143-1150. doi: 10.11990/jheu.201604063
REN Y F, LI Y, HUANG H N. A particle filter algorithm combining energy value and azimuth information[J]. Journal of Marine Science and Application, 2017, 38(7): 1143-1150. doi: 10.11990/jheu.201604063
|
[18] |
闫敬, 李文飚, 杨晛, 等. 融合Q学习与PID控制器的AUV跟踪控制[J]. 水下无人系统学报, 2021, 29(5): 565-574.
YAN J, LI W B, YANG X, et al. Tracking control of auv based on the fusion of Q-learning and PID controller[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 565-574.
|
[19] |
李峥, 李宇, 黄勇, 等. 水下目标自主连续跟踪与定位算法研究[J]. 仪器仪表学报, 2012, 33(3): 520-528. doi: 10.3969/j.issn.0254-3087.2012.03.006
LI Z, LI Y, HUANG Y, et al. Research on autonomous continuous tracking and localization algorithm for underwater targets[J]. Chinese Journal of Scientific Instrument, 2012, 33(3): 520-528. doi: 10.3969/j.issn.0254-3087.2012.03.006
|
[20] |
尤岳, 周涛, 陈科, 等. 水下无人航行器探潜能力建模与仿真分析[J]. 舰船科学技术, 2021, 43(19): 66-71.
YOU Y, ZHOU T, CHEN K, et al. Modeling and simulation analysis of the submarine detection capability of underwater unmanned vehicles[J]. Ship Science and Technology, 2021, 43(19): 66-71.
|
[21] |
ZHANG T, WAN L, PANG Y, et al. Object detection and tracking method of AUV based on acoustic vision[C]//2012 Oceans. Hampton Roads, VA, USA: IEEE, 2013.
|
[22] |
LEI B, HE Z, YANG Y, et al. Experimental demonstration of forward scattering barrier for AUV intruder[J]. Applied Acoustics, 2022, 190: 108635. doi: 10.1016/j.apacoust.2022.108635
|
[23] |
DING W, CAO H, GUO H, et al. Investigation on optimal path for submarine search by an unmanned underwater vehicle[J]. Computers and Electrical Engineering, 2019, 79: 106468. doi: 10.1016/j.compeleceng.2019.106468
|
[24] |
LI L, LI Y, YUE C, et al. Real-time underwater target detection for AUV using side scan sonar images based on deep learning[J]. Applied Ocean Research, 2023, 138: 103630. doi: 10.1016/j.apor.2023.103630
|
[25] |
SEIDEL M, FREY T, GREINERT J. Underwater UXO detection using magnetometry on hovering AUVs[J]. Journal of Field Robotics, 2023: 848-861.
|
[26] |
RONG S, XU Y. Motion parameter estimation of AUV based on underwater acoustic Doppler frequency measured by single hydrophone[J]. Frontiers in Marine Science, 2022, 9: 1019385. doi: 10.3389/fmars.2022.1019385
|
[27] |
MATSUMOTO H, STALIN S E, EMBLEY R W, et al. Hydroacoustics of a submarine eruption in the Northeast Lau Basin using an acoustic glider[C]//OCEANS 2010. Seattle, WA, USA: IEEE, 2010.
|
[28] |
ONR. Liberdade XRay Advanced Underwater Gilder[EB/OL]. (2006-04-19)[2019-10-31]. https://commons.Wikimedia.org/wiki/File:Liberdade_XRay_underwater_glider.jpg.
|
[29] |
D'SPAIN G, JENKINS S, ZIMMERMAN R, et al. Underwater acoustic measurements with the Liberdade/X-Ray flying wing glider[J]. Journal of the Acoustical Society of America, 2005, 117(4): 2624.
|
[30] |
张小川, 王超, 孙芹东, 等. 水下滑翔机对矢量水听器测向影响研究[C]//中国声学学会2017年全国声学学术会议. 哈尔滨: 中国声学学会.
|
[31] |
王超, 孙芹东, 王文龙, 等. 水下目标警戒滑翔机声学系统设计与实现[C]//2018苏鲁黑浙四省声学技术学术会议. 青岛: 苏鲁黑浙四省声学学会, 2018.
|
[32] |
刘婧, 闫建峰, 潘小群, 等. 无人机集群探潜进展研究[J]. 舰船科学技术, 2021, 43(S1): 138-141.
LIU J, YAN J, PAN X, et al. Progress study on UAV cluster dive exploration[J]. Ship Science and Technology, 2021, 43(S1): 138-141.
|
[33] |
尹晓东, 刘清宇, 徐江. 国外航空声学探潜装备研究进展[J]. 舰船科学技术, 2008, 30(6): 172-175. doi: 10.3404/j.issn.1672-7649.2008.06.039
YIN X, LIU Q, XU J. Research Progress of Foreign Aeroacoustic Diving Equipment[J]. Ship Science and Technology, 2008, 30(6): 172-175. doi: 10.3404/j.issn.1672-7649.2008.06.039
|
[34] |
成建波. 基于声呐浮标的大型无人机搜潜效能分析[J]. 声学与电子工程, 2023(1): 37-40. doi: 10.3969/j.issn.2096-2657.2023.01.08
CHENG J. Analysis of the effectiveness of large-scale unmanned aerial vehicle search and diving based on sonobuoy[J]. Acoustic and Electronic Engineering, 2023(1): 37-40. doi: 10.3969/j.issn.2096-2657.2023.01.08
|
[35] |
吴涛, 冯伟强, 张昊. 无人机蜂群对海作战概念模型研究[J]. 指挥控制与仿真, 2022, 44(2): 7-11. doi: 10.3969/j.issn.1673-3819.2022.02.002
WU T, FENG W, ZHANG H. Research on the conceptual model of UAV swarm-to-sea combat[J]. Command Control and Simulation, 2022, 44(2): 7-11. doi: 10.3969/j.issn.1673-3819.2022.02.002
|
[36] |
SUJIT P, SARIPALLI S. An empirical evaluation of co-ordination strategies for an AUV and UAV[J]. Journal of Intelligent and Robotic Systems, 2013, 70(1-4): 373-384. doi: 10.1007/s10846-012-9728-z
|
[37] |
HE Y. Mission-driven autonomous perception and fusion based on UAV swarm[J]. Chinese Journal of Aeronautics, 2020: 2831-2834.
|
[38] |
BOUKEZZOULA R, COQUIN D, NGUYEN T, et al. Multi-sensor information fusion: Combination of fuzzy systems and evidence theory approaches in color recognition for the NAO humanoid robot[J]. Robotics and Autonomous Systems, 2018, 100: 302-316. doi: 10.1016/j.robot.2017.12.002
|
[39] |
BOSMAN H, IACCA G, TEJADA A, et al. Spatial anomaly detection in sensor networks using neighborhood information[J]. Information Fusion, 2017, 33: 41-56. doi: 10.1016/j.inffus.2016.04.007
|
[40] |
苏金涛, 张华, 肖自兵, 等. 无人集群协同反潜应用研究[J]. 舰船科学技术, 2020, 42(17): 157-161. doi: 10.3404/j.issn.1672-7649.2020.09.030
SU J, ZHANG H, XIAO Z, et al. Research on the application of unmanned cluster cooperative anti-submarine[J]. Ship Science and Technology, 2020, 42(17): 157-161. doi: 10.3404/j.issn.1672-7649.2020.09.030
|
[41] |
钱东. 美国未来的大型UUV—MANTA[J]. 鱼雷技术, 2003, 10(1): 47-50, 55-57.
QIAN D. The future large-scale UUV-MANTA of the United States[J]. Torpedo Technology, 2003, 10(1): 47-50, 55-57.
|
[42] |
钟宏伟, 李国良, 宋林桦, 等. 国外大型无人水下航行器发展综述[J]. 水下无人系统学报, 2018, 26(4): 273-282. doi: 10.11993/j.issn.2096-3920.2018.04.001
ZHONG H, LI G, SONG L et al. An overview of the development of foreign large unmanned underwater vehicles[J]. Journal of Unmanned Undersea Systems, 2018, 26(4): 273-282. doi: 10.11993/j.issn.2096-3920.2018.04.001
|
[43] |
许彦伟, 薛勐, 刘明刚, 等. 多无人水下航行器协同探测声呐宽带波形设计与性能分析[J]. 电子与信息学报, 2023, 45(10): 3796-3804. doi: 10.11999/JEIT221265
XU Y, XUE M, LIU M et al. Broadband waveform design and performance analysis of multi-unmanned underwater vehicle cooperative detection sonar[J]. Journal of Electronics and Information, 2023, 45(10): 3796-3804. doi: 10.11999/JEIT221265
|
[44] |
DARPA. Mobile off-board clandestine communications and approach(MOCCA)[EB/OL]. Broad Agency Announcement. [2016-01-24]. https://www.darpa.mil/program/mobile-offboard-clandestine-communications-and-approach.
|
[45] |
NAVSEA. Annual Naval Technology Exercise(ANTX) 2016 Overview[EB/OL]. [2016-08-16]. https://www.navsea.navy.mil/ANTX2016Participants/.
|
[46] |
程锦房, 张伽伟, 姜润翔, 等. 水下电磁探测技术的发展现状[J]. 数字海洋与水下攻防, 2019, 2(4): 45-49.
CHENG J, ZHANG J, JIANG R et al. Development status of underwater electromagnetic detection technology[J]. Digital Ocean and Underwater Attack and Defense, 2019, 2(4): 45-49.
|
[47] |
谢伟, 陶浩, 龚俊斌, 等. 海上无人系统集群发展现状及关键技术研究进展[J]. 中国舰船研究, 2021, 16(1): 7-17, 31.
XIE W, TAO H, GONG J et al. Development status and key technology research progress of maritime unmanned system cluster[J]. China Ship Research, 2021, 16(1): 7-17, 31.
|
[48] |
GAO J, LI P, CHEN Z, et al. A survey on deep learning for multimodal data fusion[J]. Neural Computation, 2020, 32(1): 1-36. doi: 10.1162/neco_a_01246
|
[49] |
冯西安, 寇思玮, 岳玲. 水下移动平台网络化协同探测技术发展[J]. 应用声学, 2019, 38(4): 509-515.
FENG X, KOU S, YUE L. Development of networked cooperative detection technology for underwater mobile platforms[J]. Applied Acoustics, 2019, 38(4): 509-515.
|
[50] |
孙宁, 马沙沙. 自主飞行声呐浮标关键技术及作战样式分析[J]. 中国舰船研究, 2021, 16(6): 109-115.
SUN N, MA S. Analysis of key technology and operational style of autonomous flying sonobuoy[J]. China Ship Research, 2021, 16(6): 109-115.
|
[51] |
VILLA J, AALTONEN J, VIRTA S, et al. A co-operative autonomous offshore system for target detection using multi-sensor technology[J]. Remote Sensing, 2020, 12(24): 4106. doi: 10.3390/rs12244106
|
[52] |
CHAMPION B, JOORDENS M. Underwater swarm robotics review[C]//System of Systems Engineering Conference. IEEE, San Antonio, TX, USA, 2015: 111-116.
|
[53] |
陈双, 刘韬. 国外海洋卫星发展综述[J]. 国际太空, 2014(7): 29-36.
CHEN S, LIU T. Overview of the development of foreign ocean satellites[J]. International Space, 2014(7): 29-36.
|
[54] |
林明森, 张有广, 袁欣哲. 海洋遥感卫星发展历程与趋势展望[J]. 海洋学报, 2015, 37(1): 1-10. doi: 10.3969/j.issn.0253-4193.2015.01.001
LIN M, ZHANG Y, YUAN X. Development history and trend outlook of ocean remote sensing satellites[J]. Journal of Oceanography, 2015, 37(1): 1-10. doi: 10.3969/j.issn.0253-4193.2015.01.001
|
[55] |
段瑞洋, 王景璟, 杜军, 等. 面向“三全”信息覆盖的新型海洋信息网络[J]. 通信学报, 2019, 40(4): 10-20. doi: 10.11959/j.issn.1000-436x.2019051
DUAN R, WANG J, DU J et al. A new type of marine information network for “three full” information coverage[J]. Journal of Communication, 2019, 40(4): 10-20. doi: 10.11959/j.issn.1000-436x.2019051
|
[56] |
高建文, 肖双爱, 虞志刚, 等. 面向海洋全方位综合感知的一体化通信网络[J]. 中国电子科学研究院学报, 2020, 15(4): 343-349, 363. doi: 10.3969/j.issn.1673-5692.2020.04.008
GAO J, XIAO S, YU Z et al. An integrated communication network for all-round comprehensive sensing of the ocean[J]. Journal of China Academy of Electronic Science, 2020, 15(4): 343-349, 363. doi: 10.3969/j.issn.1673-5692.2020.04.008
|
[57] |
刘惟恒, 罗阳, 于均杰, 等. 新概念多无人机协同探潜技术发展趋势分析[J]. 无人系统技术, 2020, 3(2): 9-13.
LIU W, LUO Y, YU J et al. Analysis on the development trend of new concept multi-UAV cooperative diving technology[J]. Unmanned Systems Technology, 2020, 3(2): 9-13.
|
[58] |
程锦房, 张伽伟, 姜润翔, 等. 水下电磁探测技术的发展现状[J]. 数字海洋与水下攻防, 2019, 2(4): 45-49.
CHENG J, ZHANG J, JIANG R et al. Development status of underwater electromagnetic detection technology[J]. Digital Ocean and Underwater Attack and Defense, 2019, 2(4): 45-49.
|
[59] |
YANG X, SAMSUDIN S, WANG Y, et al. Application of target detection method based on convolutional neural network in sustainable outdoor education[J]. Sustainability, 2023, 15(3): 2542. doi: 10.3390/su15032542
|
[60] |
张昊. 水声目标辐射噪声信号增强与特征辨识技术研究[D]. 南京: 东南大学, 2022.
|
[61] |
RIZZINI D, KALLASI F, OLEARI F, et al. Investigation of vision-based underwater object detection with multiple datasets[J]. International Journal of Advanced Robotic Systems, 2015, 12(6): 1-13.
|
[62] |
WANG Z, ZHANG S. Sonar Image detection based on Multi-Scale Multi-Column Convolution Neural Networks[J]. IEEE Access, 2019, 7: 160755-160767. doi: 10.1109/ACCESS.2019.2951443
|
[63] |
NEUPANE D, SEOK J. A review on deep learning-based approaches for automatic sonar target recognition[J]. Electronics, 2020.
|
[64] |
JI F, NI J, LI G, et al. Underwater acoustic target recognition based on deep residual attention convolutional neural network[J]. Journal of Marine Science and Engineering, 2023, 11(8): 1626. doi: 10.3390/jmse11081626
|
[65] |
JI F, LI G, LU, S, et al. Research on a feature enhancement extraction method for underwater targets based on deep autoencoder networks[J]. Applied Sciences, 2024, 14: 1341. doi: 10.3390/app14041341
|