Citation: | LI Xiangheng, YAN Zhaokun, LOU Jiankun, WANG Hongdong. Adaptive Neural Network Control of ROV under Ocean Current Disturbance[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0045 |
[1] |
赵大刚, 张顺, 高适, 等. 海流对水下航行器运动及载荷影响研究综述[J]. 中国舰船研究, 2024, 19(5): 1-16.
ZHAO D G, ZHANG S, GAO S, et al. Review of influence of underwater vehicle motion and load under current[J]. Chinese Journal of Ship Research, 2024, 19(5): 1-16.
|
[2] |
Panda J P, Mitra A, Warrior H V. A review on the hydrodynamic characteristics of autonomous underwater vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2021, 235(1): 15-29. doi: 10.1177/1475090220936896
|
[3] |
姚绪梁, 王晓伟, 蒋晓刚, 等. 海流干扰下的欠驱动AUV三维路径跟踪控制[J]. 哈尔滨工业大学学报, 2019, 51(3): 37-45. doi: 10.11918/j.issn.0367-6234.201709002
YAO X L, WANG X W, JIANG X G, et al. Control for 3D path following of underactuated autonomous underwater vehicle under current disturbance[J]. Journal of Harbin Institute of Technology, 2019, 51(3): 37-45. doi: 10.11918/j.issn.0367-6234.201709002
|
[4] |
Huang B, Yang Q. Disturbance observer-based double-loop sliding-mode control for trajectory tracking of work-class ROVs[J]. Journal of Marine Science and Engineering, 2022, 10(5): 601. doi: 10.3390/jmse10050601
|
[5] |
Sakiyama J, Motoi N. Position and attitude control method using disturbance observer for station keeping in underwater vehicle[C]//IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. Washington, DC: IEEE, 2018: 5469-5474.
|
[6] |
GUERRERO J, TORRES J, CREUZE V, et al. Adaptive disturbance observer for trajectory tracking control of underwater vehicles[J]. Ocean Engineering, 2020, 200(15): 107080.
|
[7] |
陈浩华, 赵红, 王宁, 等. 复杂扰动下水下机器人的轨迹精确跟踪控制[J]. 中国舰船研究, 2022, 17(2): 98-108
CHEN H H, ZHAO H, WANG N, et al. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98-108.
|
[8] |
PATRE B M, LONDHE P S, WAGHMARE L M, et al. Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle[J]. Ocean Engineering, 2018, 159: 372-387. doi: 10.1016/j.oceaneng.2018.03.082
|
[9] |
QIU J, MA M, WANG T, et al. Gradient descent-based adaptive learning control for autonomous underwater vehicles with unknown uncertainties[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5266-5273. doi: 10.1109/TNNLS.2021.3056585
|
[10] |
张帅军, 刘卫东, 李乐, 等. 基于RBF神经网络补偿的ROV运动控制算法[J]. 水下无人系统学报, 2024, 32(2): 311-319. doi: 10.11993/j.issn.2096-3920.2023-0033
ZHANG S J, LIU W D, LI L, et al. ROV motion control algorithm based on RBF neural network compensation[J]. Journal of Unmanned Undersea Systems, 2024, 32(2): 311-319. doi: 10.11993/j.issn.2096-3920.2023-0033
|
[11] |
LI D, HAN H, QIAO J. Deterministic learning-based adaptive neural control for nonlinear full-state constrained systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(8): 5002-5011.
|
[12] |
CHU Z, ZHU D, YANG S X. Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle[J]. IEEE Transactions on Neural networks and learning systems, 2016, 28(7): 1633-1645.
|
[13] |
ANDERLINI E, PARKER G G, THOMAS G. Control of a ROV carrying an object[J]. Ocean Engineering, 2018, 165(1): 307-318.
|
[14] |
LONG C, QIN X, BIAN Y, et al. Trajectory tracking control of ROVs considering external disturbances and measurement noises using ESKF-based MPC[J]. Ocean Engineering, 2021, 241(1): 109991.
|
[15] |
GARCÍA-VALDOVINOS L G, FONSECA-NAVARRO F, AIZP- URU-ZINKUNEGI J, et al. Neuro-sliding control for underwater ROV’s subject to unknown disturbances[J]. Sensors, 2019, 19(13): 2943. doi: 10.3390/s19132943
|
[16] |
CUI R, YANG C, LI Y, et al. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(6): 1019-1029. doi: 10.1109/TSMC.2016.2645699
|
[17] |
HUANG B, YANG Q. Disturbance observer-based double-loop sliding-mode control for trajectory tracking of work-class ROVs[J]. Journal of Marine Science and Engineering, 2022, 10(5): 601. doi: 10.3390/jmse10050601
|
[18] |
罗一汉, 吴家鸣, 苏柏铭, 等. 考虑模型偏差和时变扰动的水下机器人轨迹跟踪控制[J]. 舰船科学技术, 2023, 45(24): 108-115. doi: 10.3404/j.issn.1672-7649.2023.24.020
LUO Y H, WU J M, SU B M, et al. Trajectory tracking control of underwater vehicle considering model uncertainty and time-varying disturbance[J]. Ship Science and Technology, 2023, 45(24): 108-115. doi: 10.3404/j.issn.1672-7649.2023.24.020
|
[19] |
MUÑOZ-VÁZQUEZ A J, RAMÍREZ-RODRÍGUEZ H, PARRA-VEGA V, et al. Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances[J]. International Journal of Control, Automation and Systems, 2017, 15: 1314-1321. doi: 10.1007/s12555-015-0210-0
|
[20] |
CHO G R, LI J H, PARK D, et al. Robust trajectory tracking of autonomous underwater vehicles using back-stepping control and time delay estimation[J]. Ocean Engineering, 2020, 201: 107131. doi: 10.1016/j.oceaneng.2020.107131
|
[21] |
谢争明. 全驱动自主水下机器人回收动力定位控制研究[D]. 江苏: 江苏科技大学, 2021.
|
[22] |
刘丽萍, 王红燕. 基于海流观测的欠驱动AUV自适应反演滑模轨迹跟踪[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(7): 745-753.
LIU L P, WANG H Y. Adaptive backstepping sliding mode for underactuated auv trajectory tracking based on ocean current observer[J]. Journal of Tianjin University, 2020, 53(7): 745-753.
|
[23] |
LEVANT A. Higher-order sliding modes, differentiation and output-feedback control[J]. International journal of Control, 2003, 76(9-10): 924-941. doi: 10.1080/0020717031000099029
|
[24] |
YU J, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92: 173-180. doi: 10.1016/j.automatica.2018.03.033
|
[25] |
BUTCHER J C. Numerical methods for ordinary differential equations[M]. John Wiley & Sons, 2016.
|
[26] |
DAI S L, WANG C, LUO F. Identification and learning control of ocean surface ship using neural networks[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4): 801-810. doi: 10.1109/TII.2012.2205584
|