
| Citation: | LU Deshun, ZHANG Shaoqian, WANG Haoyu, SUN Tiezhi. Flow Field and Motion Characteristics of Trans-Medium Submersible during Take-off and Landing on Water Surface[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 434-450. doi: 10.11993/j.issn.2096-3920.2024-0042 |
| [1] |
Yang X, Wang T, Liang J, et al. Survey on the novel hybrid aquatic–aerial amphibious aircraft: Aquatic unmanned aerial vehicle(AquaUAV)[J]. Progress in Aerospace Sciences, 2015, 74: 131-151. doi: 10.1016/j.paerosci.2014.12.005
|
| [2] |
Hong Y, Wang B, Liu H. Numerical study of hydrodynamic loads at early stage of vertical high-speed water entry of an axisymmetric blunt body[J]. Physics of Fluids, 2019, 31(10): 102105. doi: 10.1063/1.5121283
|
| [3] |
Song Z J, Duan W Y, Xu G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed[J]. Ocean Engineering, 2020, 211: 107574. doi: 10.1016/j.oceaneng.2020.107574
|
| [4] |
Chen J, Xiao T, Wu B, et al. Numerical study of wave effect on water entry of a three-dimensional symmetric wedge[J]. Ocean Engineering, 2022, 250: 110800. doi: 10.1016/j.oceaneng.2022.110800
|
| [5] |
Liu Z, Shi Y, Wu K, et al. Experimental study on load characteristics of vehicle during high-speed water entry[J]. Ocean Engineering, 2023, 288: 116052. doi: 10.1016/j.oceaneng.2023.116052
|
| [6] |
Zhao C, Wang Q, Lu H, et al. Vertical water entry of a hydrophobic sphere into waves: Numerical computations and experiments[J]. Physics of Fluids, 2023, 35(7): 073324.
|
| [7] |
Li Z, Hu H, Wang C, et al. Hydrodynamics and stability of oblique water entry in waves[J]. Ocean Engineering, 2024, 292: 116506. doi: 10.1016/j.oceaneng.2023.116506
|
| [8] |
王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析[J]. 力学学报, 2012, 44(1): 39-48.
|
| [9] |
Hu J, Xu B, Feng J, et al. Research on water-exit and take-off process for morphing unmanned submersible aerial vehicle[J]. China Ocean Engineering, 2017, 31: 202-209. doi: 10.1007/s13344-017-0024-3
|
| [10] |
李鹏程. 航行体出水过程主承力舱段结构动力稳定性与优化设计研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
|
| [11] |
谭骏怡, 胡俊华, 陈国明, 等. 水空跨介质航行器斜出水过程数值仿真[J]. 中国舰船研究, 2019, 14(6): 104-121.
Tan Junyi, Hu Junhua, Chen Guoming, et al. Numerical simulation of oblique water-exit process of trans-media aerial underwater vehicle[J]. Chinese Journal of Ship Research, 2019, 14(6): 104-121.
|
| [12] |
Huang J, Liang J, Wang T, et al. Numerical analysis of the body, webbed-feet, and wings during cormorant’s take off[C]//2018 IEEE International Conference on Robotics and Biomimetics(ROBIO). Kuala Lumpur, Malaysia: IEEE, 2018: 94-99.
|
| [13] |
云忠, 温猛, 罗自荣, 等. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415.
Yun Zhong, Wen Meng, Luo Zirong, et al. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(2): 407-415.
|
| [14] |
Hou T G, Yang X B, Wang T M, et al. Locomotor transition: How squid jet from water to air[J]. Bioinspiration & Biomimetics, 2020, 15(3): 036014.
|
| [15] |
赵英杰. 小型无人跨介质航行器结构设计及动力学特性分析与仿真[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
| [16] |
史崇镔. 跨介质结构物出入水多相流体动力学特性研究[D]. 大连: 大连理工大学, 2021.
|
| [17] |
张硕, 张树新, 代季鹏. 小型跨介质无人机快速水空过渡设计与试验[J]. 飞行力学, 2021, 39(5): 77-81, 94.
Zhang Shuo, Zhang Shuxin, Dai Jipeng. Design and experiments of water-to-air rapid transitions for a small cross-medium UAV[J]. Flight Dynamics, 2021, 39(5): 77-81, 94.
|
| [18] |
Lu D, Xiong C, Zhou H, et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle[J]. Ocean Engineering, 2021, 219: 108324. doi: 10.1016/j.oceaneng.2020.108324
|
| [19] |
Lyu C, Lu D, Xiong C, et al. Toward a gliding hybrid aerial underwater vehicle: Design, fabrication, and experiments[J]. Journal of Field Robotics, 2022, 39(5): 543-556. doi: 10.1002/rob.22063
|
| [20] |
Wei Z, Teng Y, Meng X, et al. Lifting-principle-based design and implementation of fixed-wing unmanned aerial-underwater vehicle[J]. Journal of Field Robotics, 2022, 39(6): 694-711. doi: 10.1002/rob.22071
|
| [21] |
Steelant J, Dick E. Modeling of laminar-turbulent transition for high freestream turbulence[J]. Journal of Fluids Engineering, 2001, 123(1): 22-30. doi: 10.1115/1.1340623
|
| [22] |
Plesset M. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16: 277-282. doi: 10.1115/1.4009975
|
| [23] |
Fenton J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway Port Coastal and Ocean Engineering, 1985, 111(2): 216-234. doi: 10.1061/(ASCE)0733-950X(1985)111:2(216)
|
| [24] |
Kim J W, O’Sullivan J, Read A. Ringing analysis of a vertical cylinder by Euler overlay method[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. [S.l.]: American Society of Mechanical Engineers, 2012: 855-866.
|
| [25] |
Brandt J B. Small-scale propeller performance at low speeds[D]. Champaign County, Illinois: University of Illinois at Urbana-Champaign, 2005.
|
| [26] |
Gong K, Shao S, Liu H, et al. Two-phase SPH simulation of fluid-structure interactions[J]. Journal of Fluids and Structures, 2016, 65: 155-179. doi: 10.1016/j.jfluidstructs.2016.05.012
|
| [27] |
陈程, 施文奎, 沈雁鸣, 等. 楔形体底升角对入水多相界面演化作用研究[J]. 水动力学研究与进展A辑, 2023, 38(5): 663-668.
Chen Cheng, Shi Wenkui, Shen Yanming, et al. Study on effect of dead-rise angle on evolution of multiphase interface in wedge water entry problems[J]. Chinese Journal of Hydrodynamics, 2023, 38(5): 663-668.
|
| [28] |
Chen B, Ning D, Liu C, et al. Wave energy extraction by horizontal floating cylinders perpendicular to wave propagation[J]. Ocean Engineering, 2016, 121: 112-122. doi: 10.1016/j.oceaneng.2016.05.016
|