• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Turn off MathJax
Article Contents
LI Jianxiang, ZHANG Wenle, LI Ming. Fixed-Time Formation Control for Multiple Unmanned Surface Vessel Systems with Input Delay[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0039
Citation: LI Jianxiang, ZHANG Wenle, LI Ming. Fixed-Time Formation Control for Multiple Unmanned Surface Vessel Systems with Input Delay[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2024-0039

Fixed-Time Formation Control for Multiple Unmanned Surface Vessel Systems with Input Delay

doi: 10.11993/j.issn.2096-3920.2024-0039
  • Received Date: 2024-03-01
  • Accepted Date: 2024-05-11
  • Rev Recd Date: 2024-04-12
  • Available Online: 2025-01-20
  • In recent years, fixed-time formation control is a research hotspot for multi-unmanned surface vessel (USV) systems, and the input delay problem is one of the key scientific issues to be solved in the fixed-time formation process of multi-USV systems. In view of this, under the general directed interaction topology, this paper carries out an in-depth study on the fixed-time formation control problem of multi-USV systems containing input delay. Firstly, the Artstein reduction method is applied to transform a multi-USV system with input time delays into a disturbance-containing control system with a second-order integral form. Secondly, in order to overcome the effect of system disturbances, a fixed-time state observer is constructed to estimate the system state. It is worth mentioning that this state observer uses only the relative position information of the USV. On this basis, a distributed fixed-time formation control protocol is proposed in combination with the backstepping method to realize the fixed-time formation control of multi-USV systems containing input delays. Finally, the correctness of the proposed theoretical results is verified by simulation experiments.

     

  • loading
  • [1]
    JIANG X, XIA G. Sliding mode formation control of leaderless unmanned surface vehicles with environmental disturbances[J]. Ocean Engineering, 2022, 244: 110301. doi: 10.1016/j.oceaneng.2021.110301
    [2]
    DONG Z, ZHANG Z, QI S, et al. Autonomous cooperative formation control of underactuated USVs based on improved MPC in complex ocean environment[J]. Ocean Engineering, 2023, 270: 113633. doi: 10.1016/j.oceaneng.2023.113633
    [3]
    ZHANG D, TANG Y, DING Z, et al. Event-based resilient formation control of multiagent systems[J]. IEEE Transactions on Cybernetics, 2019, 51(5): 2490-2503.
    [4]
    DONG X, LI Y, LU C, et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(12): 3674-3685.
    [5]
    HE W, YIN Z, SUN C. Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function[J]. IEEE Transactions on Cybernetics, 2016, 47(7): 1641-1651.
    [6]
    XIAO B, YANG X, HUO X. A novel disturbance estimation scheme for formation control of ocean surface vessels[J]. IEEE Transactions on Industrial Electronics, 2016, 64(6): 4994-5003.
    [7]
    ZHANG Y, WU Z G, SHI P. Resilient event-/self-triggering leader-following consensus control of multiagent systems against DoS attacks[J]. IEEE Transactions on Industrial Informatics, 2022, 19(4): 5925-5934.
    [8]
    YANG B, LI H, YAO D, et al. DO-based adaptive consensus control for multiple MUAVs with dynamic constraints[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(4): 2387-2398.
    [9]
    ZHAO Y, MA Y, HU S. USV formation and path-following control via deep reinforcement learning with random braking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5468-5478. doi: 10.1109/TNNLS.2021.3068762
    [10]
    宋吉广, 李德隆, 冯亮, 等. 基于感知信息的USV目标环绕跟踪方法[J]. 水下无人系统学报, 2023, 31(5): 696-702. doi: 10.11993/j.issn.2096-3920.202206011

    SONG J G, LI D L, FENG L, et al. Target surround tracking method of USVs based on perception information[J]. Journal of Unmanned Undersea Systems, 2023, 31(5): 696-702. doi: 10.11993/j.issn.2096-3920.202206011
    [11]
    HU B B, ZHANG H T, LIU B, et al. Distributed surrounding control of multiple unmanned surface vessels with varying interconnection topologies[J]. IEEE Transactions on Control Systems Technology, 2021, 30(1): 400-407.
    [12]
    LIU B, ZHANG H T, MENG H, et al. Scanning-chain formation control for multiple unmanned surface vessels to pass through water channels[J]. IEEE Transactions on Cybernetics, 2020, 52(3): 1850-1861.
    [13]
    XIE W, MA B, FERNANDO T, et al. A new formation control of multiple underactuated surface vessels[J]. International Journal of Control, 2018, 91(5): 1011-1022. doi: 10.1080/00207179.2017.1303849
    [14]
    QU Y, CAI L. An adaptive delay-compensated filtering system and the application to path following control for unmanned surface vehicles[J]. ISA Transactions, 2023, 136: 548-559. doi: 10.1016/j.isatra.2022.10.041
    [15]
    LIANG X, ZHANG Y, YANG G. Platoon control design for unmanned surface vehicles subject to input delay[J]. Scientific Reports, 2021, 11(1): 1481. doi: 10.1038/s41598-020-80348-4
    [16]
    高伟, 杨建, 刘菊, 等. 考虑通信延迟的多水面无人艇协同定位算法[J]. 哈尔滨工程大学学报, 2013, 34(12): 1490-1496, 1513. doi: 10.3969/j.issn.1006-7043.201301057

    GAO W, YANG J, LIU J, et al. Cooperative location of multiple unmanned surface vessels(USVs) considering communication delay[J]. Journal of Harbin Engineering University, 2013, 34(12): 1490-1496, 1513. doi: 10.3969/j.issn.1006-7043.201301057
    [17]
    陈昱衡, 张海成, 邹伟生, 等. 考虑系统延时的无人船路径跟踪控制[J]. 中国造船, 2023, 64(5): 249-258. doi: 10.3969/j.issn.1000-4882.2023.05.021

    CHEN Y H, ZHANG H C, ZOU W S, et al. Path tracking control algorithm of unmanned ship considering system delay[J]. Shipbuilding of China, 2023, 64(5): 249-258. doi: 10.3969/j.issn.1000-4882.2023.05.021
    [18]
    陈立家, 周为, 许毅, 等. 一种基于SDN的多约束无人船网络传输路由算法[J]. 中国舰船研究, 2022, 17(4): 107-113.

    CHEN L J, ZHOU W, XU Y, et al. Multi-constrained unmanned surface vessel network transmission routing algorithm based on SDN[J]. Chinese Journal of Ship Research, 2022, 17(4): 107-113.
    [19]
    CHEN D, LIU X, YU W. Finite-time fuzzy adaptive consensus for heterogeneous nonlinear multi-agent systems[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 3057-3066. doi: 10.1109/TNSE.2020.3013528
    [20]
    JIN X, SHI Y, TANG Y, et al. Event-triggered fixed-time attitude consensus with fixed and switching topologies[J]. IEEE Transactions on Automatic Control, 2021, 67(8): 4138-4145.
    [21]
    HUANG B, SONG S, ZHU C, et al. Finite-time distributed formation control for multiple unmanned surface vehicles with input saturation[J]. Ocean Engineering, 2021, 233: 109158. doi: 10.1016/j.oceaneng.2021.109158
    [22]
    WANG Y, LIU C. Distributed finite-time adaptive fault-tolerant formation-containment control for USVs with dynamic event-triggered mechanism[J]. Ocean Engineering, 2023, 280: 114524. doi: 10.1016/j.oceaneng.2023.114524
    [23]
    WU W, TONG S. Fixed-time formation fault tolerant control for unmanned surface vehicle systems with intermittent actuator faults[J]. Ocean Engineering, 2023, 281: 114813. doi: 10.1016/j.oceaneng.2023.114813
    [24]
    DUAN H, YUAN Y, ZENG Z. Distributed robust learning control for multiple unmanned surface vessels with fixed-time prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(2): 787-799. doi: 10.1109/TSMC.2023.3321119
    [25]
    LIU H, WENG P, TIAN X, et al. Distributed adaptive fixed-time formation control for UAV-USV heterogeneous multi-agent systems[J]. Ocean Engineering, 2023, 267: 113240. doi: 10.1016/j.oceaneng.2022.113240
    [26]
    HUANG D, LI H, LI X. Formation of generic UAVs-USVs system under distributed model predictive control scheme[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(12): 3123-3127.
    [27]
    QU Y, ZHAO W, YU Z, et al. Distributed prescribed performance containment control for unmanned surface vehicles based on disturbance observer[J]. ISA Transactions, 2022, 125: 699-706. doi: 10.1016/j.isatra.2021.12.007
    [28]
    WEI X, YU W, WANG H, et al. An observer-based fixed-time consensus control for second-order multi-agent systems with disturbances[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 66(2): 247-251.
    [29]
    ZUO Z, TIE L. A new class of finite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Control, 2014, 87(2): 363-370. doi: 10.1080/00207179.2013.834484
    [30]
    POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Transactions on Automatic Control, 2011, 57(8): 2106-2110.
    [31]
    SÁNCHEZ-TORRES J D, LOUKIANOV A G. A fixed-time second order sliding mode observer for a class of nonlinear systems[C]//2014 13th International Workshop on Variable Structure Systems. Nantes, France: IEEE, 2014.
    [32]
    DO K D, PAN J. Control of ships and underwater vehicles: Design for underactuated and nonlinear marine systems[M]. Berlin: Springer Science & Business Media, 2009.
    [33]
    WANG C, ZUO Z, LIN Z, et al. Consensus control of a class of lipschitz nonlinear systems with input delay[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(11): 2730-2738. doi: 10.1109/TCSI.2015.2479046
    [34]
    NI J, LIU L, LIU C, et al. Fixed-time leader-following consensus for second-order multiagent systems with input delay[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8635-8646. doi: 10.1109/TIE.2017.2701775
    [35]
    SHTESSEL Y, EDWARDS C, FRIDMAN L, et al. Sliding mode control and observation[M]. New York: Springer New York, 2014.
    [36]
    ZHANG H, LI Z, QU Z, et al. On constructing Lyapunov functions for multi-agent systems[J]. Automatica, 2015, 58: 39-42. doi: 10.1016/j.automatica.2015.05.006
    [37]
    WANG W, MATEOS L A, PARK S, et al. Design, modeling, and nonlinear model predictive tracking control of a novel autonomous surface vehicle[C]//IEEE International Conference on Robotics and Automation. Brisbane, Australia: IEEE, 2018: 6189-6196.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article Views(23) PDF Downloads(3) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return