• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 3
Jun  2024
Turn off MathJax
Article Contents
CHU Yue, LIU Pingan, HUANG Xi, GAO Song, JI Zhentao, ZHOU Xiaohu. Numerical Calculation of Water Exit Process of Supercavitating Vehicles under Different Sailing Conditions[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 496-506. doi: 10.11993/j.issn.2096-3920.2024-0017
Citation: CHU Yue, LIU Pingan, HUANG Xi, GAO Song, JI Zhentao, ZHOU Xiaohu. Numerical Calculation of Water Exit Process of Supercavitating Vehicles under Different Sailing Conditions[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 496-506. doi: 10.11993/j.issn.2096-3920.2024-0017

Numerical Calculation of Water Exit Process of Supercavitating Vehicles under Different Sailing Conditions

doi: 10.11993/j.issn.2096-3920.2024-0017
  • Received Date: 2024-02-15
  • Accepted Date: 2024-03-18
  • Rev Recd Date: 2024-03-14
  • Available Online: 2024-04-09
  • The water exit process of vehicles is very complicated, accompanied by multiphase flow, cavitation, phase transition, and turbulence instability, and the applied force is highly unsteady and nonlinear. At present, studies on the water exit problem of the vehicle with cavitation focus on the vertical or oblique water exit, emphasizing the trajectory and attitude of the vehicle. There are few studies on the water exit process of the supercavitating vehicle. In this paper, based on STAR-CCM+ software, overlapping grid technology was used for meshing, and the volume of fluid(VOF) model was used to capture the gas-liquid interface. The Schnerr-Sauer model described the cavitation process around the vehicle, and a numerical calculation model of the water exit process of the vehicle was established. The water exit process of the vehicle under different sailing conditions(initial velocity, initial water depth, and ventilation) was simulated and calculated, and the flow field and cavity evolution laws under different conditions were obtained. The hydrodynamic and kinematic characteristics of the supercavitating vehicle were analyzed. The simulation results show that the underwater motion of the vehicle with different initial velocities presents two different modes. Under different water depths, the initial cavity number is different. Cavity around the vehicle is more likely to rupture in deeper waters. The cavity morphology can be improved effectively by increasing the ventilation.

     

  • loading
  • [1]
    Franc J P, Michel J M. Unsteady attached cavitation on an oscillatin hydrofoil[J]. Fluid Mech, 1988, 193(1): 171-189.
    [2]
    Von Karman T. The impact on seaplane floats during landing[R]. Washington, DC: National Advisory Committee on Aeronautics, 1929: 1-8.
    [3]
    Robertson J M. Hydroballistic calculations of the rise and water exit of buoyant bodies[M]. Columbus: Defense Technical Information Center, 1959.
    [4]
    Moran J P. The vertical water-exit and entry of slender symmetric bodies[J]. Journal of the Aerospace Sciences, 1961, 28(10): 803-812. doi: 10.2514/8.9194
    [5]
    Greenhow M, Lin W M. Non-linear free surface effects: experiments and theory[R]. MIT: Department of Ocean Engineering, 1983: 83-119.
    [6]
    Greenhow M. Water-entry and exit of a horizontal circular cylinder[J]. Applied Ocean Research, 1988, 10(4): 191-198. doi: 10.1016/S0141-1187(88)80003-8
    [7]
    Greenhow M, Moyo S. Water entry and exit of horizontal circular cylinders[J]. Philosophical Transactions-Royal Society. Mathematical, Physical and Engineering Sciences, 1997, 355(1724): 551-563. doi: 10.1098/rsta.1997.0024
    [8]
    Nguyen V T, Ha C T, Park W G. Multiphase flow simulation of water-entry and exit of axisymmetric bodies [C]//Proceedings of the ASME 2013. San Diego, California, USA: ASME, 2013.
    [9]
    李杰, 鲁传敬, 傅惠萍. 细长回转体出水过程的数值模拟[C]//第二十届全国水动力学研讨会文集. 上海: 海洋出版社, 2007: 294-299.
    [10]
    鲁传敬,李杰. 水下航行体出水空泡溃灭过程及其特性研究[C]//第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源诞辰110周年纪念大会文集(上册).上海: 海洋出版社, 2012: 54-67.
    [11]
    刘杰 . 航行体出水过程通气空化流场特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [12]
    袭祥发. 超空泡导弹潜射出水过程流固耦合数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
    [13]
    田建辉, 胡晨明. 高速弹体出水过程数值模拟[J]. 兵器装备工程学报, 2023, 44(12): 73-78, 176. doi: 10.11809/bqzbgcxb2023.12.010
    [14]
    Hirt C W, Nichols B D. Volume of fluid(VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [15]
    Shih T H, Liou W W, Shabbir A, et al. A new kepsilon eddy viscosity model for high: Reynolds number turbulent flows[J]. Computers Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
    [16]
    Sauer J, Schnerr G H. Development of a new cavitation model based on bubble dynamics[J]. Journal of Applied Mathematics and Mechanics, 2001, 81(S3): 561-562. doi: 10.1002/zamm.20010811559
    [17]
    尤天庆, 张嘉钟, 王聪, 等. 航行体出水过程头部流场载荷特性分析[J]. 北京航空航天大学学报, 2011, 37(5): 610-614.
    [18]
    Savchenko Y N, Vlasenko Y D, Semenenko V N. Experimental studies of high-speed cavitated flows[J]. International Journal of Fluid Mechanics Research, 1999, 26(3): 365-374. doi: 10.1615/InterJFluidMechRes.v26.i3.80
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Article Metrics

    Article Views(535) PDF Downloads(68) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return