• 中国科技核心期刊
  • JST收录期刊
  • Scopus收录期刊
  • DOAJ收录期刊
Volume 32 Issue 6
Jan  2025
Turn off MathJax
Article Contents
LI Xin, WANG Xiaoming, WU Jianguo, ZHAO Jiwei, XIN Jiacheng, CHEN Kai, ZHANG Bin. Error Compensation for Dead Reckoning Based on SVM[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1009-1017. doi: 10.11993/j.issn.2096-3920.2024-0004
Citation: LI Xin, WANG Xiaoming, WU Jianguo, ZHAO Jiwei, XIN Jiacheng, CHEN Kai, ZHANG Bin. Error Compensation for Dead Reckoning Based on SVM[J]. Journal of Unmanned Undersea Systems, 2024, 32(6): 1009-1017. doi: 10.11993/j.issn.2096-3920.2024-0004

Error Compensation for Dead Reckoning Based on SVM

doi: 10.11993/j.issn.2096-3920.2024-0004
  • Received Date: 2024-01-11
  • Accepted Date: 2024-04-07
  • Rev Recd Date: 2024-03-27
  • Available Online: 2024-09-23
  • In the use of machine learning methods for error compensation in dead reckoning of an autonomous undersea vehicle(AUV), the neural network algorithm is commonly used. However, neural networks require a large number of training samples to achieve stable training results. To solve this problem, research was conducted on the application of support vector machine(SVM) for error compensation in dead reckoning. By utilizing SVM, an error compensation model was trained to correct the errors in dead reckoning, thereby improving navigational accuracy. The error compensation model takes seven parameters as input: pitch angle, roll angle, course angle, forward, right, and upward velocity of the Doppler velocity log(DVL) relative to the ground, and dead reckoning time of the AUV. The difference in latitude and longitude provided by the global positioning system(GPS) and inertial navigation system(INS) + DVL combination compared with latitude and longitude obtained from dead reckoning serves as the output of the model. The SVM trained model and the neural network trained model show a relative error of 0.28% and 0.93%, respectively, when the amount of data is limited. Through lake tests, it is concluded that the model trained by SVM can control the relative error of dead reckoning within 0.5%.

     

  • loading
  • [1]
    MARTINEZ A, HERNANDEZ L, SAHLI H, et al. Model-aided navigation with sea current estimation for an autonomous underwater vehicle[J]. International Journal of Advanced Robotic Systems, 2015, 12(7): 103-116. doi: 10.5772/60415
    [2]
    BARISIC M, MISKOVIC N, VASILIJEVIC A, et al. Fusing hydroacoustic absolute position fixes with AUV on-board dead reckoning[C]//IFAC Symposium on Robot Control. Dubrovnik, Croatia: University of Zagreb, 2012: 211-217.
    [3]
    谢彦新, 胡成全, 王凯, 等. 基于神经网络的航位推算导航[J]. 吉林大学学报(理学版), 2017, 55(5): 1192-1198.

    XIE Y X, HU C Q, WANG K, et al. Dead-reckoning navigation based on neural network[J]. Journal of Jilin University(Science Edition), 2017, 55(5): 1192-1198.
    [4]
    QIU B C, WANG M F, LI H W, et al. Development of hybrid neural network and current forecasting model based dead reckoning method for accurate prediction of underwater glider position[J]. Network Daily News, 2023(4): 59-59.
    [5]
    YANG S, SHANG X, SUN T, et al. A new dead reckoning method for HAUVs assisted by a dynamic model with ocean current information[J]. Ocean Engineering, 2024, 295: 116847. doi: 10.1016/j.oceaneng.2024.116847
    [6]
    岳钰隽, 邱娜, 金志扬, 等. 改进支持向量机的车辆定位导航精度提升方法[J]. 重庆理工大学学报(自然科学), 2023, 37(4): 85-94.

    YUE Y J, QIU N, JIN Z Y, et al. Research on accuracy improvement of vehicle positioning and navigation with an improved support vector machine[J]. Journal of Chongqing Institute of Technology, 2023, 37(4): 85-94.
    [7]
    彭树萍. AUV 动力学模型辅助的航位推算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
    [8]
    刘桂峰. 水下无人航行器航位推算方法研究[J]. 舰船科学技术, 2021, 43(18): 94-96. doi: 10.3404/j.issn.1672-7649.2021.9A.032

    LIU G F. Research on dead reckoning method of AUV[J]. Ship Science and Technology, 2021, 43(18): 94-96. doi: 10.3404/j.issn.1672-7649.2021.9A.032
    [9]
    孙玉山, 代天娇, 赵志平. 水下机器人航位推算导航系统及误差分析[J]. 船舶工程, 2010, 32(5): 67-72. doi: 10.3969/j.issn.1000-6982.2010.05.019

    SUN Y S, DAI T J, ZHAO Z P. Error analysis of dead-reckoning navigation system for autonomous underwater vehicle[J]. Ship Engineering, 2010, 32(5): 67-72. doi: 10.3969/j.issn.1000-6982.2010.05.019
    [10]
    吴海波. 基于小波变换的AUV多尺度组合导航算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
    [11]
    李成涛. 不同潜深下水下机器人导航位置修正方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
    [12]
    舒旭光. 基于测速误差预补偿的水下航行体组合导航技术[J]. 现代电子技术, 2014, 37(13): 139-142. doi: 10.3969/j.issn.1004-373X.2014.13.040

    SHU X G. Integrated navigation technology for underwater vehicles based on precompensation of velocity measurement deviation[J]. Modern Electronics Technique, 2014, 37(13): 139-142. doi: 10.3969/j.issn.1004-373X.2014.13.040
    [13]
    周博文, 童晖, 张彬, 等. 八波束相控阵换能器的研制[J]. 振动与冲击, 2022, 41(8): 217-222.

    ZHOU B W, TONG H, ZHANG B, et al. Development of eight-beam phased array transducer[J]. Journal of Vibration and Shock, 2022, 41(8): 217-222.
    [14]
    赵基伟. 基于多传感器融合的微小型AUV导航系统研究[D]. 天津: 河北工业大学, 2022.
    [15]
    崔洪宇, 赵德有, 王锋. 海洋平台灰预测和支持向量机的逆控制[J]. 哈尔滨工程大学学报, 2009, 30(6): 613-618. doi: 10.3969/j.issn.1006-7043.2009.06.004

    CUI H Y, ZHAO D Y, WANG F. Adaptive inverse control of offshore platform vibrations using grey forecasting and a support vector machine[J]. Journal of Harbin Engineering University, 2009, 30(6): 613-618. doi: 10.3969/j.issn.1006-7043.2009.06.004
    [16]
    罗康, 崔海英. 螺旋桨转速信息辅助水下航行器组合导航研究[J]. 计算机仿真, 2013, 30(12): 302-305, 320. doi: 10.3969/j.issn.1006-9348.2013.12.071

    LUO K, CUI H Y. Research on integrated navigation technology assisted by propeller speed information for AUV[J]. Computer Simulation, 2013, 30(12): 302-305, 320. doi: 10.3969/j.issn.1006-9348.2013.12.071
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article Views(98) PDF Downloads(22) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return