• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 5
Oct  2024
Turn off MathJax
Article Contents
YANG Qingyu, REN Ping, WANG Hao. A Simplified Modeling Method of UVMS Dynamics Based on Quasi-Lagrange Equation[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 891-900. doi: 10.11993/j.issn.2096-3920.2024-0002
Citation: YANG Qingyu, REN Ping, WANG Hao. A Simplified Modeling Method of UVMS Dynamics Based on Quasi-Lagrange Equation[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 891-900. doi: 10.11993/j.issn.2096-3920.2024-0002

A Simplified Modeling Method of UVMS Dynamics Based on Quasi-Lagrange Equation

doi: 10.11993/j.issn.2096-3920.2024-0002
  • Received Date: 2023-01-03
  • Accepted Date: 2024-03-13
  • Rev Recd Date: 2023-03-05
  • Available Online: 2024-07-19
  • As a kind of complex system with strong nonlinearity, strong coupling, time variance, redundancy, and high dimension, the modeling, motion control, and stability analysis of an underwater vehicle-manipulator system(UVMS) are very challenging. In dynamics modeling, the traditional Lagrange equation is often used to model the complex UVMS with high degrees of freedom, which requires the operation of derivation and partial derivation of the generalized coordinates and their derivatives and will face the problems of a large amount of calculation and low modeling efficiency. Therefore, this paper proposed a simplified dynamics modeling method for UVMS with 6+n degree-of-freedom based on the quasi-Lagrange equation, which could reduce the amount of calculation in the symbolic formula derivation and improve the modeling efficiency and the accuracy of the results. Finally, the numerical simulation of a UVMS model was carried out with the physical parameters of the underwater vehicle BlueROV and the underwater manipulator Reach Alpha, and the simulation results verified the complex coupling of the UVMS. The dynamics model based on the proposed method had a clear equation form, which not only provided strong support for the study of control algorithms and the optimization of coupling forces but also a basis for the design of dynamics parameters and the study of trajectory planning.

     

  • loading
  • [1]
    杨波, 刘烨瑶, 廖佳伟. 载人潜水器——面向深海科考和海洋资源开发利用的“国之重器”[J]. 中国科学院院刊, 2021, 36(5): 622-631.

    YANG B, LIU Y Y, LIAO J W. Manned submersible——the most important weapon of the country for deep-sea scientific research and marine resources development and utilization[J]. Proceedings of the Chinese Academy of Sciences, 2021, 36(5): 622-631.
    [2]
    ZHANG H, ZHANG S, WANG Y, et al. Subsea pipeline leak inspection by autonomous underwater vehicle[J]. Applied Ocean Research, 2021, 107: 102321. doi: 10.1016/j.apor.2020.102321
    [3]
    王涛. 水下机器人ROV在石油行业的维修技术研究[J]. 中国石油和化工标准与质量, 2023, 43(19): 184-186. doi: 10.3969/j.issn.1673-4076.2023.19.059

    WANG T. Research on maintenance technology of ROV in petroleum industry[J]. China Petroleum and Chemical Industry Standards and Quality, 2023, 43(19): 184-186. doi: 10.3969/j.issn.1673-4076.2023.19.059
    [4]
    LI B, WANG Y, ZHU K, et al. Structure design and control research of a novel underwater cable-driven manipulator for autonomous underwater vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2020, 234(1): 170-180. doi: 10.1177/1475090219851948
    [5]
    GAO L, SONG Y, GAO J, et al. Dynamic modeling and simulation an underwater vehicle manipulator system[C]//2022 IEEE 9th International Conference on Underwater System Technology: Theory and Applications(USYS). Kuala Lumpur, Malaysia: IEEE, 2022: 1-6.
    [6]
    XIONG X, XIANG X, WANG Z, et al. On dynamic coupling effects of underwater vehicle-dual-manipulator system[J]. Ocean Engineering, 2022, 258: 111699. doi: 10.1016/j.oceaneng.2022.111699
    [7]
    SHAH U H, KARKOUB M, KERIMOGLU D, et al. Dynamic analysis of the UVMS: Effect of disturbances, coupling, and joint-flexibility on end-effector positioning[J]. Robotica, 2021, 39(11): 1952-1980. doi: 10.1017/S0263574721000072
    [8]
    TARN T J, SHOULTS G A, YANG S P. A dynamic model of an underwater vehicle with a robotic manipulator using Kane's method[J]. Autonomous Robots, 1996, 3(2-3): 269-283. doi: 10.1007/BF00141159
    [9]
    HAN H, WEI Y, YE X, et al. Modeling and fuzzy decoupling control of an underwater vehicle-manipulator system[J]. IEEE Access, 2020, 8: 18962-83. doi: 10.1109/ACCESS.2020.2968063
    [10]
    ZHU Q, SHANG H Q, LU X, et al. Adaptive sliding mode tracking control of underwater vehicle-manipulator systems considering dynamic disturbance[J]. Ocean Engineering, 2024, 291: 116300. doi: 10.1016/j.oceaneng.2023.116300
    [11]
    SARKAR N, PODDER T K. Coordinated motion planning and control of autonomous underwater vehicle-manipulator systems subject to drag optimization[J]. IEEE Journal of Oceanic Engineering, 2001, 26(2): 228-239. doi: 10.1109/48.922789
    [12]
    MEIROVITCH L. Methods of analytical dynamics[M]. New York: Courier Corporation, 2010.
    [13]
    FOSSEN T I. Guidance and control of ocean vehicles[M]. Hoboken: John Wiley & Sons Inc, 1994.
    [14]
    CRAIG J J. 机器人学导论[M]. 3版. 北京: 机械工业出版社, 2006.
    [15]
    MARAIS W J, WILLIAMS S B, PIZARRO O. Go with the flow: Energy minimising periodic trajectories for UVMS[C]//2022 International Conference on Robotics and Automation(ICRA). Philadelphia, PA, USA: IEEE, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(338) PDF Downloads(68) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return