
| Citation: | ZHANG Zhiwei, FANG Zejiang, HE Runmin, ZHAO Qi, ZHU Zhaotong. Development Status and Trend of U.S. Equipment for Underwater Special Operations[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 962-970. doi: 10.11993/j.issn.2096-3920.2023-0166 |
| [1] |
United States Special Operations Command. Department of Defense Fiscal Year(FY) 2022 Budget Estimates, Procurement[DB/OL]. https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2022/FY2022_p1.pdf. (2021-05-01) [2023-08-06].
|
| [2] |
United States Special Operations Command. Department of Defense Fiscal Year(FY) 2023 Budget Estimates, Procurement[DB/OL]. https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2023/FY2023_p1.pdf. (2022-05-01) [2023-08-06].
|
| [3] |
United States Special Operations Command. Department of Defense Fiscal Year(FY) 2024 Budget Estimates, Procurement[DB/OL]. https://comptroller.defense.gov/Portals/45/Documents/defbudget/FY2024/FY2024_p1.pdf. (2023-03-09) [2023-08-06].
|
| [4] |
朱兆彤, 陈自立, 赵琪. 基于财年预算的美国蛙人特战装备发展现状及动向分析[J]. 水下无人系统学报, 2022, 30(6): 696-703. doi: 10.11993/j.issn.2096-3920.2022-0051
ZHU Z T, CHEN Z L, ZHAO Q. The development status and trend analysis of American diver special operation equipment based on its fiscal year defense budget[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 696-703. doi: 10.11993/j.issn.2096-3920.2022-0051
|
| [5] |
付学志, 石建飞, 江源. 蛙人水下作战系统装备发展现状及趋势[J]. 电声技术, 2019, 43(12): 11-17.
FU X Z, SHI J F, JIANG Y. Development status and trends of frogman underwater warfare system equipment[J]. Electroacoustic Technology, 2019, 43(12): 11-17.
|
| [6] |
周超, 钟宏伟, 陈迎亮, 等. 国外蛙人水下输送平台技术发展综述[J]. 水下无人系统学报, 2022, 30(6): 680-695. doi: 10.11993/j.issn.2096-3920.2022-0027
ZHOU C, ZHONG H W, CHEN Y L, et al. Review of the development of frogman underwater transport platform technology abroad[J]. Journal of Unmanned Undersea Systems, 2022, 30(6): 680-695. doi: 10.11993/j.issn.2096-3920.2022-0027
|
| [7] |
李经. 水下无人作战系统装备现状及发展趋势[J]. 舰船科学技术, 2017, 39(1): 1-5, 36. doi: 10.3404/j.issn.1672-7619.2017.01.001
LI J. Current status and development trends of underwater unmanned combat system equipment[J]. Ship Science and Technology, 2017, 39(1): 1-5, 36. doi: 10.3404/j.issn.1672-7619.2017.01.001
|
| [8] |
滕俊, 郭万海, 刘冬利. 国外海军水下特种作战研究[J]. 舰船电子对抗, 2012, 35(4): 39-42. doi: 10.3969/j.issn.1673-9167.2012.04.011
TENG J, GUO W H, LIU D L. Research on foreign naval underwater special operations[J]. Ship Electronic Countermeasures, 2012, 35(4): 39-42. doi: 10.3969/j.issn.1673-9167.2012.04.011
|
| [9] |
周超, 王庆胜, 李卓禹. 外军水下特种作战装备体系研究[J]. 数字海洋与水下攻防, 2020, 3(1): 52-57.
ZHOU C, WANG Q S, LI Z Y. Research on foreign army’s underwater special operations equipment system[J]. Digital Ocean and Underwater Attack and Defense, 2020, 3(1): 52-57.
|
| [10] |
王金成, 郭星香, 孙玉臣, 等. 反蛙人武器系统发展综述[J]. 数字海洋与水下攻防, 2020, 3(6): 486-493.
WANG J C, GUO X X, SUN Y C, et al. Overview of the development of anti frogman weapon systems[J]. Digital Ocean and Underwater Attack and Defense, 2020, 3(6): 486-493.
|
| [11] |
LEI Y, ZHAO S Y, WANG X X, et al. Deep-sea underwater cooperative operation of manned/unmanned submersible and surface vehicles for different application scenarios[J]. Journal of Marine Science and Engineering, 2022, 10(7): 909-931.
|
| [12] |
闵瑞红, 郭燕舞. 美国海军“海豹”特种作战部队投放系统[J]. 舰船科学技术, 2012, 34(1): 138-143.
MIN R H, GUO Y W. US Navy“Seal”special operations force delivery system[J]. Ship Science and Technology, 2012, 34(1): 138-143.
|
| [13] |
SUTTON H I. US Navy Seals next generation SDV MK. XI(SWCS) [EB/OL]. (2015-10-6) [2022-7-29]. http://www.hisutton.com/US%20Navy%20SEALs%20next%20generation%20SDV%20Mk.XI%20(SWCS).html.
|
| [14] |
JACOBS K. Advanced swimmer delivery system (ASDS) of the U. S. Navy[J]. Naval Forces, 2003(3): 107-109.
|
| [15] |
SUTTON H I. SEALs + USSOCOM next generation sub UOES3[EB/OL]. (2015-6-23) [2022-7-29]. http://www.hisuton.com/SEALs%20+%20USSOCOM%20next%20generation%20sub%20UOES3.html.
|
| [16] |
倪先胜, 梁来雨, 刘俊, 等. 国外潜艇特种作战模式及趋势分析[J]. 舰船科学技术, 2021, 43(9): 185-189.
NI X S, LIANG L Y, LIU J, et al. The mode and trend analysis for special operation on submarine[J]. Ship Science and Technology, 2021, 43(9): 185-189.
|
| [17] |
顾靖华, 方以群, 柳初萌, 等. 蛙人循环式潜水呼吸器的特点及发展趋势[J]. 海军医学杂志, 2020, 41(2): 232-235.
GU J H, FANG Y Q, LIU C M, et al. The characteristics and development trends of frogman recirculating diving respirators[J]. Journal of Naval Medicine, 2020, 41(2): 232-235.
|
| [18] |
周英杰, 张坤, 衣洪杰, 等. 大动物氦氧模拟潜水舱内微环境的控制[J]. 军事医学, 2022, 46(1): 34-36.
ZHOU Y J, ZHANG K, YI H J, et al. Control of the microenvironment in large animal helium oxygen simulated diving cabins[J]. Military Medicine, 2022, 46(1): 34-36.
|
| [19] |
CHEN L, HU D, HAN X. Study on forearm swing recognition algorithms to drive the underwater power-assisted device of frogman[J]. Journal of Field Robotics, 2022, 39(1): 14-27. doi: 10.1002/rob.22035
|
| [20] |
HEO J, KIM J, KWON Y. Technology development of unmanned underwater vehicles(UUVs)[J]. Journal of Computer and Communications, 2017, 5(7): 28-35. doi: 10.4236/jcc.2017.57003
|
| [21] |
刘洋, 陈练, 苏强, 等. 水下无人航行器装备技术发展与作战应用研究[J]. 舰船科学技术, 2020, 42(12): 1-7.
LIU Y, CHEN L, SU Q, et al. Research on the development and operational application of underwater unmanned vehicle equipment technology[J]. Ship Science and Technology, 2020, 42(12): 1-7.
|
| [22] |
DUBYOSKI J M. Asymmetric influence of single propeller UUV operations on entanglement with marine vegetation[D]. Monterey: Naval Postgraduate School, 2022.
|
| [23] |
宋保维, 潘光, 张立川, 等. 自主水下航行器发展趋势及关键技术[J]. 中国舰船研究, 2022, 17(5): 27-44.
SONG B W, PAN G, ZHANG L C, et al. Development trends and key technologies of autonomous underwater vehicles[J]. China Shipbuilding Research, 2022, 17(5): 27-44.
|