• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 5
Oct  2024
Turn off MathJax
Article Contents
ZHOU Shijian, ZHU Pengli, LIU Siyuan, CHEN Han. Unsupervised Controllable Enhancement of Underwater Images Based on Multi-Domain Attribute Representation Disentanglement[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 808-817. doi: 10.11993/j.issn.2096-3920.2023-0165
Citation: ZHOU Shijian, ZHU Pengli, LIU Siyuan, CHEN Han. Unsupervised Controllable Enhancement of Underwater Images Based on Multi-Domain Attribute Representation Disentanglement[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 808-817. doi: 10.11993/j.issn.2096-3920.2023-0165

Unsupervised Controllable Enhancement of Underwater Images Based on Multi-Domain Attribute Representation Disentanglement

doi: 10.11993/j.issn.2096-3920.2023-0165
  • Received Date: 2023-12-18
  • Accepted Date: 2024-02-07
  • Rev Recd Date: 2024-02-06
  • Available Online: 2024-03-18
  • The unsupervised enhancement technology for underwater images is mainly oriented towards specific distortion factors and exhibits limited adaptability towards various underwater distorted images. The content attribute(structure) of the image will migrate and change with the style attribute(appearance), resulting in an uncontrolled enhancement effect and affecting the stability and accuracy of subsequent environmental perception and processing. To address this issue, an unsupervised controllable enhancement method of underwater images based on multi-domain attribute representation disentanglement(MARD) was proposed in the paper. First, a framework of multi-domain unified representation disentanglement cycle-consistent adversarial translations was designed, thereby enhancing the algorithm’s adaptability to multiple distortion factors. Subsequently, a dual-encoding and conditional decoding network structure was constructed. Finally, a series of losses for MARD was designed to enhance the independence and controllability of quality, content, style, and other attribute representations. Experimental results demonstrate that the proposed algorithm not only eliminates various distortions such as color aberration, blur, noise, and low illumination in underwater images but also quantify the image style codes by linear interpolation for controllable enhancement of underwater images.

     

  • loading
  • [1]
    SONG W, WANG Y, HUANG D M, et al. Enhancement of underwater images with statistical model of background light and optimization of transmission map[J]. IEEE Transactions on Broadcasting, 2020, 66(1): 153-169. doi: 10.1109/TBC.2019.2960942
    [2]
    XIE J, HOU G J, WANG G D, et al. A variational framework for underwater image dehazing and deblurring[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(6): 3514-3526.
    [3]
    MCGLAMERY B L. A computer model for underwater camera systems[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1980, 208: 221-231.
    [4]
    ZHUANG P X, WU J M, PORIKLI F, et al. Underwater image enhancement with hyper-laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455. doi: 10.1109/TIP.2022.3196546
    [5]
    ZHOU J C, PANG L, ZHANG D H, et al. Underwater image enhancement method via multi-interval subhistogram perspective equalization[J]. IEEE Journal of Oceanic Engineering, 2023, 48(2): 474-488. doi: 10.1109/JOE.2022.3223733
    [6]
    ZHUANG P X, LI C Y, WU J M. Bayesian retinex underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104171. doi: 10.1016/j.engappai.2021.104171
    [7]
    ZHUANG P X, DING X H. Underwater image enhancement using an edge-preserving filtering retinex algorithm[J]. Multimedia Tools and Applications, 2020, 79: 17257-17277. doi: 10.1007/s11042-019-08404-4
    [8]
    FU X Y, ZHUANG P X, HUANG Y, et al. A retinex-based enhancing approach for single underwater image[C]//2014 IEEE International Conference on Image Processing(ICIP). Paris, France: IEEE, 2014: 4572-4576.
    [9]
    LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376-4389.
    [10]
    QI Q, LI K Q, ZHENG H Y, et al. SGUIE-Net: Semantic attention guided underwater image enhancement with multi-scale perception[J]. IEEE Transactions on Image Processing, 2022, 31: 6816-6830. doi: 10.1109/TIP.2022.3216208
    [11]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//28th Conference on Neural Information Processing Systems(NIPS), Advances in Neural Information Processing Systems. Montreal, Canada: NIPS, 2014: 2672-2680.
    [12]
    胡雨航, 赵磊, 李恒, 等. 多特征选择与双向残差融合的无监督水下图像增强[J]. 电子测量与仪器学报, 2023, 37(9): 190-202.
    [13]
    ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2242-2251.
    [14]
    刘彦呈, 董张伟, 朱鹏莅, 等. 基于特征解耦的无监督水下图像增强[J]. 电子与信息学报, 2022, 44(10): 3389-3398. doi: 10.11999/JEIT211517

    LIU Y C, DONG Z W, ZHU P L, et al. Unsupervised underwater image enhancement based on feature disentanglement[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3389-3398. doi: 10.11999/JEIT211517
    [15]
    YU X M, YING Z Q, LI T M, et al. Multi-mapping image-to-image translation with central biasing normalization[J/OL]. arXiv preprint(2020-04-17). https://www.arxiv.org/abs/1806.10050v5.
    [16]
    ZHU P L, LIU Y C, XU M Y, et al. Unsupervised multiple representation disentanglement framework for improved underwater visual perception[J]. IEEE Journal of Oceanic Engineering, 2023, 46(1): 48-65.
    [17]
    MARQUES T P, ALBU A B. L2UWE: A framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE, 2020: 2286-2295.
    [18]
    PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579-1594. doi: 10.1109/TIP.2017.2663846
    [19]
    HUANG D, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]//2018 MultiMedia Modeling: 24th International Conference. Bangkok, Thailand: MMIC, 2018: 453-465.
    [20]
    SONG W, WANG Y, HUANG D M, et al. A rapid scene depthestimation model based on underwater light attenuationprior for underwater image restoration[J]. Advances in Multimedia Information Processing-PCM, 2018, 11164: 678-688.
    [21]
    FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]//2018 IEEE International Conference on Robotics and Automation(ICRA). Brisbane, Australia: IEEE, 2018: 7159-7165.
    [22]
    LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. doi: 10.1016/j.patcog.2019.107038
    [23]
    ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234. doi: 10.1109/LRA.2020.2974710
    [24]
    LI C Y, ANWAR S, HOU J H, et al. Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985-5000. doi: 10.1109/TIP.2021.3076367
    [25]
    LI C Y, ANWAR S, HOU J H, et al. Underwater image enhancement via medium transmission-guided multi-colorspace embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985-5000.
    [26]
    PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2015, 41(3): 541-551.
    [27]
    YANG N, ZHONG Q H, LI K, et al. A reference-free underwater image quality assessment metric in frequency domain[J]. Signal Processing: Image Communication, 2021, 94: 116218. doi: 10.1016/j.image.2021.116218
    [28]
    YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. doi: 10.1109/TIP.2015.2491020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article Views(525) PDF Downloads(104) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return