
| Citation: | ZHOU Shijian, ZHU Pengli, LIU Siyuan, CHEN Han. Unsupervised Controllable Enhancement of Underwater Images Based on Multi-Domain Attribute Representation Disentanglement[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 808-817. doi: 10.11993/j.issn.2096-3920.2023-0165 |
| [1] |
SONG W, WANG Y, HUANG D M, et al. Enhancement of underwater images with statistical model of background light and optimization of transmission map[J]. IEEE Transactions on Broadcasting, 2020, 66(1): 153-169. doi: 10.1109/TBC.2019.2960942
|
| [2] |
XIE J, HOU G J, WANG G D, et al. A variational framework for underwater image dehazing and deblurring[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(6): 3514-3526.
|
| [3] |
MCGLAMERY B L. A computer model for underwater camera systems[J]. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1980, 208: 221-231.
|
| [4] |
ZHUANG P X, WU J M, PORIKLI F, et al. Underwater image enhancement with hyper-laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-5455. doi: 10.1109/TIP.2022.3196546
|
| [5] |
ZHOU J C, PANG L, ZHANG D H, et al. Underwater image enhancement method via multi-interval subhistogram perspective equalization[J]. IEEE Journal of Oceanic Engineering, 2023, 48(2): 474-488. doi: 10.1109/JOE.2022.3223733
|
| [6] |
ZHUANG P X, LI C Y, WU J M. Bayesian retinex underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104171. doi: 10.1016/j.engappai.2021.104171
|
| [7] |
ZHUANG P X, DING X H. Underwater image enhancement using an edge-preserving filtering retinex algorithm[J]. Multimedia Tools and Applications, 2020, 79: 17257-17277. doi: 10.1007/s11042-019-08404-4
|
| [8] |
FU X Y, ZHUANG P X, HUANG Y, et al. A retinex-based enhancing approach for single underwater image[C]//2014 IEEE International Conference on Image Processing(ICIP). Paris, France: IEEE, 2014: 4572-4576.
|
| [9] |
LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376-4389.
|
| [10] |
QI Q, LI K Q, ZHENG H Y, et al. SGUIE-Net: Semantic attention guided underwater image enhancement with multi-scale perception[J]. IEEE Transactions on Image Processing, 2022, 31: 6816-6830. doi: 10.1109/TIP.2022.3216208
|
| [11] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//28th Conference on Neural Information Processing Systems(NIPS), Advances in Neural Information Processing Systems. Montreal, Canada: NIPS, 2014: 2672-2680.
|
| [12] |
胡雨航, 赵磊, 李恒, 等. 多特征选择与双向残差融合的无监督水下图像增强[J]. 电子测量与仪器学报, 2023, 37(9): 190-202.
|
| [13] |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2242-2251.
|
| [14] |
刘彦呈, 董张伟, 朱鹏莅, 等. 基于特征解耦的无监督水下图像增强[J]. 电子与信息学报, 2022, 44(10): 3389-3398. doi: 10.11999/JEIT211517
LIU Y C, DONG Z W, ZHU P L, et al. Unsupervised underwater image enhancement based on feature disentanglement[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3389-3398. doi: 10.11999/JEIT211517
|
| [15] |
YU X M, YING Z Q, LI T M, et al. Multi-mapping image-to-image translation with central biasing normalization[J/OL]. arXiv preprint(2020-04-17). https://www.arxiv.org/abs/1806.10050v5.
|
| [16] |
ZHU P L, LIU Y C, XU M Y, et al. Unsupervised multiple representation disentanglement framework for improved underwater visual perception[J]. IEEE Journal of Oceanic Engineering, 2023, 46(1): 48-65.
|
| [17] |
MARQUES T P, ALBU A B. L2UWE: A framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA: IEEE, 2020: 2286-2295.
|
| [18] |
PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579-1594. doi: 10.1109/TIP.2017.2663846
|
| [19] |
HUANG D, WANG Y, SONG W, et al. Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition[C]//2018 MultiMedia Modeling: 24th International Conference. Bangkok, Thailand: MMIC, 2018: 453-465.
|
| [20] |
SONG W, WANG Y, HUANG D M, et al. A rapid scene depthestimation model based on underwater light attenuationprior for underwater image restoration[J]. Advances in Multimedia Information Processing-PCM, 2018, 11164: 678-688.
|
| [21] |
FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]//2018 IEEE International Conference on Robotics and Automation(ICRA). Brisbane, Australia: IEEE, 2018: 7159-7165.
|
| [22] |
LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038. doi: 10.1016/j.patcog.2019.107038
|
| [23] |
ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234. doi: 10.1109/LRA.2020.2974710
|
| [24] |
LI C Y, ANWAR S, HOU J H, et al. Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985-5000. doi: 10.1109/TIP.2021.3076367
|
| [25] |
LI C Y, ANWAR S, HOU J H, et al. Underwater image enhancement via medium transmission-guided multi-colorspace embedding[J]. IEEE Transactions on Image Processing, 2021, 30: 4985-5000.
|
| [26] |
PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2015, 41(3): 541-551.
|
| [27] |
YANG N, ZHONG Q H, LI K, et al. A reference-free underwater image quality assessment metric in frequency domain[J]. Signal Processing: Image Communication, 2021, 94: 116218. doi: 10.1016/j.image.2021.116218
|
| [28] |
YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. doi: 10.1109/TIP.2015.2491020
|