Citation: | ZHAO Wei, LI Xuan, HAO Chengpeng. Research progress in high-resolution direction of arrival estimation technology[J]. Journal of Unmanned Undersea Systems. doi: 10.11993/j.issn.2096-3920.2023-0158 |
[1] |
BARTLETT M S. Smoothing periodograms from time-series with continuous spectra[J]. Nature, 1948, 161(4096): 686-687. doi: 10.1038/161686a0
|
[2] |
LI J, STOICA P, WANG Z. Doubly constrained robust Capon beamformer[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2407-2423. doi: 10.1109/TSP.2004.831998
|
[3] |
MESTRE X, LAGUNAS M A. Finite sample size effect on minimum variance beamformers: Optimum diagonal loading factor for large arrays[J]. IEEE Transactions on Signal Processing, 2005, 54(1): 69-82.
|
[4] |
GERSHMAN A B, LUO Z Q, SHAHBAZPANAHI S, et al. Robust adaptive beamforming based on worst-case performance optimization[M]. Hoboken, New Jersey, United States: Copyright © 2006 John Wiley & Sons, Inc. , 2006: 49-89.
|
[5] |
SANTOSH S, SHARMA K. A review on multiple emitter location and signal parameter estimation[J]. International Journal of Engineering Research, 2013, 2(3): 239-244.
|
[6] |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas & Propagation, 1986, 34(3): 276-280.
|
[7] |
BARABELL A. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]// Processing International Conf. on Acoustics Speech & Signal. Boston, Ma. , USA: IEEE, 1983: 336-339.
|
[8] |
RAO B D, HARI K V S. Performance analysis of root-MUSIC[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1939-1949. doi: 10.1109/29.45540
|
[9] |
ERMOLAEV V T, GERSHMAN A B. Fast algorithm for minimum-norm direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2389-2394. doi: 10.1109/78.317860
|
[10] |
ERMOLAEV V T, GERSHMAN A B. Eigenvalue analysis of spatial covariance matrices for correlated signals[J]. Electronics Letters, 1992, 12(28): 1114-1115.
|
[11] |
韩芳明, 张守宏, 潘复平. 阵列误差对MUSIC算法性能的影响与校正[J]. 西安电子科技大学学报(自然科学版), 2003, 30(5): 585-589.
HAN M F, ZHANG S Z, PAN F P. Effect of array uncertainty on the performance of MUSIC and its calibration[J]. Journal of Xidian University(Natural Science), 2003, 30(5): 585-589.
|
[12] |
ROY R, PAULRAJ A, KAILATH T. ESPRIT——A subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE transactions on acoustics, speech, and signal processing, 1986, 34(5): 1340-1342. doi: 10.1109/TASSP.1986.1164935
|
[13] |
OTTERSTEN B, VIBERG M, KAILATH T. Performance analysis of the total least squares ESPRIT algorithm[J]. IEEE transactions on signal processing, 1991, 39(5): 1122-1135. doi: 10.1109/78.80967
|
[14] |
ZOLTOWSKI M D, HAARDT M, MATHEWS C P. Closed-form 2D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT[J]. IEEE Transactions on Signal Processing, 1996, 44(2): 316-328. doi: 10.1109/78.485927
|
[15] |
HAARDT M, NOSSEK J A. Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden[J]. IEEE transactions on signal processing, 1995, 43(5): 1232-1242. doi: 10.1109/78.382406
|
[16] |
GOLDSTEIN J S, REED I S, SCHARF L L. A multistage representation of the Wiener filter based on orthogonal projections[J]. IEEE Transactions on Information Theory, 1998, 44(7): 2943-2959. doi: 10.1109/18.737524
|
[17] |
HIEMSTRA J D. Robust implementations of the multistage Wiener filter [D]. Blacksburg, VA, USA: Virginia Polytechnic Institute and State University, 2003.
|
[18] |
SONG A, LI Y, LIU J, et al. DOA estimation of noncircular signals with multistage Wiener filter and polynomial rooting[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(1): 53-57.
|
[19] |
SHI Y, WANG S, HUANG Z. An algorithm for 2D DOA source parameters estimate based on multistage wiener filters[C]//2006 International Conference on Communications, Circuits and Systems. Guilin China: IEEE, 2006: 398-401.
|
[20] |
XIN J, ZHENG N, SANO A. Simple and efficient nonparametric method for estimating the number of signals without eigendecomposition[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1405-1420. doi: 10.1109/TSP.2006.889982
|
[21] |
VIBERG M, Ottersten B. Sensor array processing based on subspace fitting[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1110-1121. doi: 10.1109/78.80966
|
[22] |
VIBERG M, OTTERSTEN B, KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE transactions on Signal Processing, 1991, 39(11): 2436-2449. doi: 10.1109/78.97999
|
[23] |
MARCOS S, BENIDIR M. Source-bearing estimation and sensor positioning with the propagator method[C]//Advanced Signal Processing Algorithms, Architectures, and Implementations. [S. l. ]: SPIE, 1990, 1348: 312-323.
|
[24] |
MARCOS S, MARSAL A, BENIDIR M. The propagator method for source bearing estimation[J]. Signal processing, 1995, 42(2): 121-138. doi: 10.1016/0165-1684(94)00122-G
|
[25] |
EVANS J E, JOHNSON J R, SUN D F. Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance systems[R]. Massachusetts Avenue Cambridge: Massachusetts Institute of Technology, Lincoln Laboratory, 1982.
|
[26] |
SHAN T J, WAX M, KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 806-811. doi: 10.1109/TASSP.1985.1164649
|
[27] |
PILLAI S U, KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(1): 8-15. doi: 10.1109/29.17496
|
[28] |
王布宏, 王永良, 陈辉. 相干信源波达方向估计的加权空间平滑算法[J]. 通信学报, 2003, 24(4): 31-40.
WANG B H, WANG Y L, CHEN H. Weighted spatial smoothing algorithm for direction of arrival estimation of coherent sources[J]. Journal on Communications, 2003, 24(4): 31-40.
|
[29] |
KUNG S, LO C, FOKA R. A Toeplitz approximation approach to coherent source direction finding[C]// IEEE International Conference on Acoustics, Speech, & Signal Processing(ICASSP). Tokyo, Japan: IEEE, 1986.
|
[30] |
王布宏, 王永良, 陈辉. 一种新的相干信源DOA估计算法: 加权空间平滑协方差矩阵的Toeplitz矩阵拟合[J]. 电子学报, 2003, 31(9): 1394-1397.
WANG B H, WANG Y L, CHEN H. A novel genetic approach to DOA estimation of coherent sources based on weighted spatial smoothing and Toeplitz matrix fitting[J], Acta Electronica Sinica, 2003, 31(9): 1394-1397.
|
[31] |
GORODNITSKY I F, RAO B D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[J]. IEEE Transactions on signal processing, 1997, 45(3): 600-616. doi: 10.1109/78.558475
|
[32] |
COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on signal processing, 2005, 53(7): 2477-2488. doi: 10.1109/TSP.2005.849172
|
[33] |
KARABULUT G Z, YONGACOGLU A. Sparse channel estimation using orthogonal matching pursuit algorithm[C]//IEEE 60th Vehicular Technology Conference. Los Angeles, CA, USA: IEEE, 2004.
|
[34] |
NEEDELL D, VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of computational mathematics, 2009, 9(3): 317-334. doi: 10.1007/s10208-008-9031-3
|
[35] |
NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and computational harmonic analysis, 2009, 26(3): 301-321. doi: 10.1016/j.acha.2008.07.002
|
[36] |
MALIOUTOV D, CETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE transactions on signal processing, 2005, 53(8): 3010-3022. doi: 10.1109/TSP.2005.850882
|
[37] |
牛俊儒. 基于稀疏重构的窄带信号DOA估计研究[D]. 西安: 西安电子科技大学, 2017.
|
[38] |
TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3): 211-244.
|
[39] |
WIPF D P, RAO B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164. doi: 10.1109/TSP.2004.831016
|
[40] |
JI S, XUE Y, CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. doi: 10.1109/TSP.2007.914345
|
[41] |
BABACAN S D, MOLINA R, KATSAGGELOS A K. Bayesian compressive sensing using laplace priors[J]. IEEE Transactions on Image Processing, 2010, 19(1): 53-63. doi: 10.1109/TIP.2009.2032894
|
[42] |
WILLIAMS P M. Bayesian regularization and pruning using a Laplace prior[J]. Neural computation, 1995, 7(1): 117-143. doi: 10.1162/neco.1995.7.1.117
|
[43] |
LI K, YIN X Y, ZONG Z Y. Bayesian seismic multi-scale inversion in complex Laplace mixed domains[J]. Petroleum Science, 2017, 14(4): 694-710. doi: 10.1007/s12182-017-0191-0
|
[44] |
GERVEN M, CSEKE B, OOSTENVELD R, et al. Bayesian source localization with the multivariate laplace prior[J]. Advances in Neural Information Processing Systems, 2009, 2(1): 1901-1909.
|
[45] |
MECKLENBRÄUKER C F, GERSTOFT P, ZÖCHMANN E. C–LASSO and its dual for sparse signal estimation from array data[J]. Signal Processing, 2017, 130: 204-216. doi: 10.1016/j.sigpro.2016.06.029
|
[46] |
JIANG T, ZHANG X, LI Y. Bayesian compressive sensing using reweighted Laplace priors[J]. Aeu-international Journal of Electronics and Communications, 2018, 97: 178-184.
|
[47] |
YANG Z, XIE L, ZHANG C. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE transactions on signal processing, 2012, 61(1): 38-43.
|
[48] |
DAI J, BAO X, XU W, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE Signal Processing Letters, 2016, 24(1): 46-50.
|
[49] |
WANG Q, ZHAO Z, CHEN Z, et al. Grid evolution method for DOA estimation[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2374-2383. doi: 10.1109/TSP.2018.2814998
|
[50] |
WANG Q, YU H, LI J, et al. Adaptive grid refinement method for doa estimation via sparse bayesian learning[J]. IEEE Journal of Oceanic Engineering, 2023, 48(3): 806-819. doi: 10.1109/JOE.2023.3235055
|
[51] |
YANG Z, XIE L, ZHANG C. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959-4973 doi: 10.1109/TSP.2014.2339792
|
[52] |
BHASKAR B N, TANG G, RECHT B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987-5999. doi: 10.1109/TSP.2013.2273443
|
[53] |
TANG G, BHASKAR B N, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465-7490. doi: 10.1109/TIT.2013.2277451
|
[54] |
YANG Z, XIE L. Enhancing sparsity and resolution via reweighted atomic norm minimization[J]. IEEE Transactions on Signal Processing, 2015, 64(4): 995-1006.
|
[55] |
WANG Y, TIAN Z. IVDST: A fast algorithm for atomic norm minimization in line spectral estimation[J]. IEEE Signal Processing Letters, 2018, 25(11): 1715-1719. doi: 10.1109/LSP.2018.2870539
|
[56] |
JYOTHI R, BABU P, WANG Y, et al. DYANOM—Dykstra’s projection based atomic norm solver[J]. Signal Processing, 2021, 182: 107958. doi: 10.1016/j.sigpro.2020.107958
|
[57] |
WAX M, SHAN T J, KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE transactions on acoustics, speech, and signal processing, 1984, 32(4): 817-827. doi: 10.1109/TASSP.1984.1164400
|
[58] |
LIU Z, WANG X, ZHAO G, et al. Wideband DOA estimation based on sparse representation—an extension of l 1-SVD in wideband cases[C]//2013 IEEE International Conference on Signal Processing, Communication and Computing(ICSPCC 2013). Kunming: IEEE, 2013: 1-4.
|
[59] |
LUO J A, ZHANG X P, WANG Z. A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 1-13. doi: 10.1186/s13634-016-0440-1
|
[60] |
LUO J A, ZHANG X P, WANG Z. A new subband information fusion method for wideband DOA estimation using sparse signal representation[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Vancouver, BC, Canada: IEEE, 2013: 4016-4020.
|
[61] |
TANG Z, BLACQUIERE G, LEUS G. Aliasing-free wideband beamforming using sparse signal representation[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3464-3469. doi: 10.1109/TSP.2011.2140108
|
[62] |
XU X, ZHANG M, YE Z. Wideband DOA estimation based on sparse signal representation[C]//2012 Fifth International Symposium on Computational Intelligence and Design(ISCID). Hangzhou: IEEE, 2012, 2: 10-13.
|
[63] |
GERSTOFT P, MECKLENBRÄUKER C F, XENAKI A, et al. Multisnapshot sparse Bayesian learning for DOA[J]. IEEE Signal Processing Letters, 2016, 23(10): 1469-1473. doi: 10.1109/LSP.2016.2598550
|
[64] |
GERSTOFT P, MECKLENBRÄUKER C F, Wideband sparse Bayesian learning for DOA estimation from multiple snapshots, in: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop, 2016, pp. 1–5.
|
[65] |
NANNURU S, GEMBA K L, GERSTOFT P, et al. Sparse Bayesian learning with multiple dictionaries[J]. Signal Processing, 2019, 159: 159-170. doi: 10.1016/j.sigpro.2019.02.003
|
[66] |
VALAEE S. Array processing for detection and localization of narrowband, wideband and distributed sources[D]. Montreal, Quebec, Canada: McGill University, 1994.
|
[67] |
HUNG H, KAVEH M. Focussing matrices for coherent signal-subspace processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(8): 1272-1281. doi: 10.1109/29.1655
|
[68] |
DORON M. On focusing matrices for wide-band array processing[J]. Signal Processing IEEE Transactions on, 1992, 40(6): 1295-1302. doi: 10.1109/78.139236
|
[69] |
SELLONE F. Robust wideband DOA estimation[C]//2005 IEEE/SP 13th Workshop on Statistical Signal Processing(SSP). Bordeaux, France: IEEE, 2005.
|
[70] |
MA F, ZHANG X. Wideband DOA estimation based on focusing signal subspace[J]. Signal, Image and Video Processing, 2019, 13: 675-682 doi: 10.1007/s11760-018-1396-4
|
[71] |
WANG L, ZHAO L, BI G, et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2015, 64(2): 275-289.
|
[72] |
Zhang J, Bao M, Zhang X P, et al. DOA estimation for heterogeneous wideband sources based on adaptive space-frequency joint processing[J]. IEEE Transactions on Signal Processing, 2022, 70: 1657-1672. doi: 10.1109/TSP.2022.3160802
|
[73] |
王朋, 迟骋, 纪永强, 等. 二维解卷积波束形成水下高分辨三维声成像[J]. 声学学报, 2019, 44(4): 613-625.
WANG P, CHI C, JI Y Q, et al. Two-dimensional deconvolved beamforming for high-resolution underwater three-dimensional acoustical imaging[J]. Acta Acustica, 2019, 44(4): 613-625.
|
[74] |
汪敬东, 王乾威, 蔡献祥, 等. 基于 STK 的台湾铺路爪雷达系统性能分析[J]. 电子技术与软件工程, 2022, 12: 78-81.
|
[75] |
Pal P, Vaidyanathan P P. Nested arrays: A novel approach TO ARRAY PROCESSING WITh enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181. doi: 10.1109/TSP.2010.2049264
|
[76] |
YANG M, SUN L, YUAN X, et al. Improved nested array with hole-free DCA and more degrees of freedom[J]. Electronics Letters, 2016, 52(25): 2068-2070. doi: 10.1049/el.2016.3197
|
[77] |
LIU C L, VAIDYANATHAN P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part II: High-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4203-4217. doi: 10.1109/TSP.2016.2558167
|
[78] |
SHI Z, XU L, ZHENG W. Low complexity DFT based DOA estimation for synthetic nested array using single moving sensor[J]. Wireless Personal Communications, 2018, 101: 857-874. doi: 10.1007/s11277-018-5720-7
|
[79] |
XIONG J, WANG W Q, CHEN H, et al. Compressive sensing-based range and angle estimation for nested FDA radar[C]//2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference(APSIPA). Hong Kong, China: IEEE, 2015: 608-611.
|
[80] |
SUN F, GAO B, CHEN L, et al. A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[J]. Sensors, 2016, 16(9): 1367. doi: 10.3390/s16091367
|
[81] |
ZHANG D, ZHANG Y, ZHENG G, et al. Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[J]. Electronics Letters, 2017, 53(18): 1277-1279. doi: 10.1049/el.2017.2292
|
[82] |
ZHENG W, ZHANG X, ZHAI H. Generalized coprime planar array geometry for 2D DOA estimation[J]. IEEE Communications Letters, 2017, 21(5): 1075-1078. doi: 10.1109/LCOMM.2017.2664809
|
[83] |
ZHENG W, ZHANG X, GONG P, et al. DOA estimation for coprime linear arrays: An ambiguity-free method involving full DOFs[J]. IEEE Communications Letters, 2017, 22(3): 562-565.
|
[84] |
PAL P, VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm[C]//2011 Digital signal processing and signal processing education meeting (DSP/SPE). Sedona, AZ, USA: IEEE, 2011: 289-294.
|
[85] |
ZHOU C, ZHOU J. Direction-of-arrival estimation with coarray ESPRIT for coprime array[J]. Sensors, 2017, 17(8): 1779. doi: 10.3390/s17081779
|
[86] |
ZHANG Y D, AMIN M G, HIMED B. Sparsity-based DOA estimation using co-prime arrays[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada: IEEE, 2013: 3967-3971.
|
[87] |
SHEN Q, CUI W, LIU W, et al. Underdetermined wideband DOA estimation of off-grid sources employing the difference co-array concept[J]. Signal Processing, 2017, 130: 299-304. doi: 10.1016/j.sigpro.2016.07.022
|
[88] |
QIN Y, LIU Y, LIU J, et al. Underdetermined wideband DOA estimation for off-grid sources with coprime array using sparse Bayesian learning[J]. Sensors, 2018, 18(1): 253. doi: 10.3390/s18010253
|
[89] |
SHI Z, ZHOU C, GU Y, et al. Source estimation using coprime array: A sparse reconstruction perspective[J]. IEEE Sensors Journal, 2016, 17(3): 755-765.
|
[90] |
ZHOU C, GU Y, FAN X, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956-5971. doi: 10.1109/TSP.2018.2872012
|
[91] |
WAX M, SHAN T S, KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transcantion on Acoustics, Speech and Signale Processing, 1984, 32(4): 817-827. doi: 10.1109/TASSP.1984.1164400
|
[92] |
YE C B, ZHU B Z, LI B B, et al. Computationally efficient 2D-DOA estimation for uniform planar arrays: RD-ROOT-MUSIC algorithm[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(4): 685-694.
|
[93] |
JHANG W, CHEN S W, CHANG A C. Efficient hybrid DOA estimation for massive uniform rectangular array[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2020, 103(6): 836-840.
|
[94] |
SHEN F F, LIU Y M, ZHAO G H, et al. Sparsity-based off-grid DOA estimation with uniform rectangular arrays[J]. IEEE Sensors Journal, 2018, 18(8): 3384-3390. doi: 10.1109/JSEN.2018.2800906
|
[95] |
ZHANG Z, WANG Y, TIAN Z. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95-106. doi: 10.1016/j.sigpro.2019.04.024
|
[96] |
TIAN X, LEI J, DU L. A generalized 2D DOA estimation method based on low-rank matrix reconstruction[J]. IEEE Access, 2018, 6: 17407-17414. doi: 10.1109/ACCESS.2018.2820165
|
[97] |
刘学承, 朱敏, 武岩波. 适用任意平面阵列的二维宽带DOA快速估计算法[J]. 仪器仪表学报, 2022, 43(7): 102-111.
LIU X C, ZHU M, WU Y B. A fast 2D wideband direction-of-arrival estimation method with arbitrary planar arrays[J]. Chinese Journal of Scientific Instrument, 2022, 43(7): 102-111.
|
[98] |
PARK Y, SEONG W, GERS T P. Block-sparse two-dimensional off-grid beamforming with arbitrary planar array geometry[J]. The Journal of the Acoustical Society of America, 2020, 147(4): 2184-2191. doi: 10.1121/10.0000983
|
[99] |
陈涛, 史林, 黄桂根, 等. 适用于任意几何结构平面阵列的无网格DOA估计算法[J]. 电子与信息学报, 2022, 44(3): 1052-1058.
CHEN T, SHI L, HUANG G G, et al. Gridless DOA estimation algorithm for planar arrays with arbitrary geometry[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1052-1058.
|
[100] |
LI J, LI Y, ZHANG X. Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22(12): 2495-2498. doi: 10.1109/LCOMM.2018.2872955
|
[101] |
QIN S, ZHANG Y D, AMIN M G. Improved two-dimensional DOA estimation using parallel coprime arrays[J]. Signal processing, 2020, 172: 107428. doi: 10.1016/j.sigpro.2019.107428
|
[102] |
LI J, ZHAO J, DING Y, et al. An improved co-prime parallel array with conjugate augmentation for 2D DOA estimation[J]. IEEE Sensors Journal, 2021, 21(20): 23400-23411. doi: 10.1109/JSEN.2021.3106382
|
[103] |
LI L, CHEN Y, ZANG B, et al. A high-precision two-dimensional DOA estimation algorithm with parallel coprime array[J]. Circuits, Systems, and Signal Processing, 2022, 41(12): 6960-6974. doi: 10.1007/s00034-022-02102-7
|
[104] |
ZHENG Z, MU S. Two-dimensional DOA estimation using two parallel nested arrays[J]. IEEE Communications Letters, 2019, 24(3): 568-571.
|
[105] |
Li J, Zhang X. Two-dimensional grid-less angle estimation based on three parallel nested arrays[J]. Signal Processing, 2020, 173: 107577. doi: 10.1016/j.sigpro.2020.107577
|
[106] |
He J, Li L, Shu T. 2-D direction finding using parallel nested arrays with full co-array aperture extension[J]. Signal Processing, 2021, 178: 107795. doi: 10.1016/j.sigpro.2020.107795
|
[107] |
张岩, 韩子腾, 王昭雷, 等. 基于L型声阵列多重信号分类声源测向研究[J]. 无线电工程, 2024, 54(2): 335-342.
ZHANG Y, HAN Z T, WANG Z L, et al. Sound source direction finding based on L-shaped acoustic array multiple signal classification[J]. Radio Engineering, 2024, 54(2): 335-342.
|
[108] |
高佳睿. Sub-6GHz频段微基站阵列天线研究与设计[D]. 西安: 西安科技大学, 2022.
|
[109] |
李佳旺. 面向毫米波通信和雷达应用的阵列天线技术研究[D]. 南京: 东南大学, 2022.
|
[110] |
TAYEM N, KWON H M. L-shape 2-dimensional arrival angle estimation with propagator method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(5): 1622-1630. doi: 10.1109/TAP.2005.846804
|
[111] |
WANG G, XIN J, ZHENG N, et al. Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3197-3212. doi: 10.1109/TSP.2011.2144591
|
[112] |
GU J F, WEI P. Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2D angle estimation problems[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 553-556. doi: 10.1109/LAWP.2007.907913
|
[113] |
LIU D, LIANG J. L-shaped array-based 2D DOA estimation using parallel factor analysis[C]//2010 8th World Congress on Intelligent Control and Automation. Jinan, China: IEEE, 2010: 6949-6952.
|
[114] |
XU L, WU R, ZHANG X, et al. Joint two-dimensional DOA and frequency estimation for L-shaped array via compressed sensing PARAFAC method[J]. IEEE Access, 2018, 6: 37204-37213. doi: 10.1109/ACCESS.2018.2850307
|
[115] |
魏子翔, 崔嵬, 侯建刚, 等. 基于秩减估计器的L型阵列二维波达角估计算法[J]. 电子与信息学报, 2015, 37(8): 1879-1885.
WEI Z X, CUI W, HOU J G, et al. Rank reduction estimator based algorithm for estimating 2D-DOA with L-shaped array[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1879-1885.
|
[116] |
ZHANG Z, WANG W, HUANG Y, et al. Decoupled 2D direction of arrival estimation in L-shaped array[J]. IEEE Communications Letters, 2017, 21(9): 1989-1992. doi: 10.1109/LCOMM.2017.2708698
|
[117] |
MATHEWS C P, ZOLTOWSKI M D. Eigenstructure techniques for 2D angle estimation with uniform circular arrays[J]. IEEE Transactions on signal processing, 1994, 42(9): 2395-2407. doi: 10.1109/78.317861
|
[118] |
鄢社锋. 优化阵列信号处理(下册): 模态处理与方位估计[M]. 北京: 科学出版社, 2018.
|
[119] |
邓昌建, 蒋世奇, 蔚泽峰, 等. 球形麦克风阵列时频故障信号定位算法研究[J]. 电子测量与仪器学报, 2017, 31(2): 309-314.
DENG J C, JIANG S Q, WEI Z F, et al. Research on location algorithm of time-frequency fault signal based on spherical microphone array[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(2): 309-314.
|
[120] |
陈卓, 陈伏虎. 潜艇艇艏阵声呐发展趋势分析[J]. 声学与电子工程, 2015(4): 49-52.
|
[121] |
张鹏. 大角度扫描共形阵波束综合技术研究[D]. 西安: 西安电子科技大学, 2023.
|
[122] |
MEYER J, ELKO G. A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield[C]//2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, FL, USA: IEEE, 2002: 1781-1784.
|
[123] |
YAN S, SUN H, SVENSSON U P, et al. Optimal modal beamforming for spherical microphone arrays[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 19(2): 361-371.
|
[124] |
BATTISTA G, CHIARIOTTI P, CASTELLINI P. Spherical harmonics decomposition in inverse acoustic methods involving spherical arrays[J]. Journal of Sound and Vibration, 2018, 433: 425-460. doi: 10.1016/j.jsv.2018.05.001
|
[125] |
CHU Z, YANG Y, HE Y. Deconvolution for 3-dimensional acoustic source identification based on spherical harmonics beamforming[J]. Journal of Sound and Vibration, 2015, 344: 484-502. doi: 10.1016/j.jsv.2015.01.047
|
[126] |
YANG Y, CHU Z, SHEN L, et al. Fast fourier-based deconvolution for three-dimensional acoustic source identification with solid spherical arrays[J]. Mechanical Systems and Signal Processing, 2018, 107: 183-201. doi: 10.1016/j.ymssp.2018.01.028
|
[127] |
YAN S, HOU C, MA X. From element-space to modal array signal processing[J]. Shengxue Xuebao(Acta Acustica), 2011, 36(5): 461-468.
|
[128] |
LIU C, DING Z, LIU X. A low complexity 2D pattern synthesis algorithm for cylindrical array[J]. International Journal of Antennas and Propagation, 2013, 2013(1): 352843.
|
[129] |
ZHU S, WANG Y, YANG Y. Robust superdirective beamforming for cylindrical arrays based on subarray processing[J]. Acta Acustica, 2018, 43(4): 600-611.
|
[130] |
PASTORINO M, RANDAZZO A. Real-time SVM-based approach for localization of sources[C]//2004 IEEE International Workshop on Imaging Systems and Techniques(IST). Stresa, Italy: IEEE, 2004: 2-6.
|
[131] |
ASHOK C, VENKATESWARAN N. Support vector regressionbased DOA estimation in heavy tailed noise environment[C]//2016 International Conference on Wireless Communications, Signal Processing and Networking(WiSPNET). Chennai, India: IEEE, 2016: 99-102.
|
[132] |
ASHOK C, VENKATESWARAN N. Support vector regressionbased DOA estimation in heavy tailed noise environment[C]//2016 International Conference on Wireless Communications, Signal Processing and Networking(WiSPNET). Chennai, India: IEEE, 2016: 99-102.
|
[133] |
DEHGHANPOUR M, VAKILI V T T, FARROKHI A. DOA estimation using multiple kernel learning SVM considering mutual coupling[C]//2012 Fourth International Conference on Intelligent Networking and Collaborative Systems. Bucharest, Romania: IEEE, 2012: 55-61.
|
[134] |
TERABAYASHI K, NATSUAKI R, HIROSE A. Ultrawideband direction-of-arrival estimation using complex-valued spatiotemporal neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(9): 1727-1732. doi: 10.1109/TNNLS.2014.2313869
|
[135] |
ZHENG W Q, ZOU Y X, RITZ C. Spectral mask estimation using deep neural networks for inter-sensor data ratio model based robust DOA estimation[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). South Brisbane, QLD, Australia: IEEE, 2015: 325-329.
|
[136] |
ADAVANNE S, POLITIS A, VIRTANEN T. Direction of arrival estimation for multiple sound sources using convolutional recurrent neural network[C]//2018 26th European Signal Processing Conference(EUSIPCO). Rome, Italy: IEEE, 2018: 1462-1466.
|
[137] |
XIANG H, CHEN B, YANG T, et al. Improved de-multipath neural network models with self-paced feature-to-feature learning for DOA estimation in multipath environment[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5068-5078. doi: 10.1109/TVT.2020.2977894
|
[138] |
YANG Y, CHEN H, ZHANG P. A stacked self-attention network for two-dimensional direction-of-arrival estimation in hands-free speech communication[J]. The Journal of the Acoustical Society of America, 2022, 152(6): 3444-3457. doi: 10.1121/10.0016467
|
[139] |
LIU Z M, ZHANG C, PHILIP S Y. Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7315-7327. doi: 10.1109/TAP.2018.2874430
|
[140] |
CHAKRABARTY S, HABETS E A P. Multi-speaker DOA estimation using deep convolutional networks trained with noise signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(1): 8-21. doi: 10.1109/JSTSP.2019.2901664
|
[141] |
WU L, LIU Z M, HUANG Z T. Deep convolution network for direction of arrival estimation with sparse prior[J]. IEEE Signal Processing Letters, 2019, 26(11): 1688-1692. doi: 10.1109/LSP.2019.2945115
|
[142] |
EMMA O, PETER G, HAIQIANG N. A feedforward neural network for direction-of-arrival estimation[J]. The Journal of the Acoustical Society of America, 2020, 147: 2035-2048. doi: 10.1121/10.0000944
|
[143] |
HE W, MOTLICEK P, ODOBEZ J M. Neural network adaptation and data augmentation for multi-speaker direction-of-arrival estimation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 1303-1317. doi: 10.1109/TASLP.2021.3060257
|
[144] |
YUAN Y, WU S, WU M, et al. Unsupervised learning strategy for direction-of-arrival estimation network[J]. IEEE Signal Processing Letters, 2021, 28: 1450-1454. doi: 10.1109/LSP.2021.3096117
|
[145] |
NIE W, ZHANG X, XU J, et al. Adaptive direction-of-arrival estimation using deep neural network in marine acoustic environment[J]. IEEE Sensors Journal, 2023, 23(13): 15093-15105. doi: 10.1109/JSEN.2023.3274309
|
[146] |
CAO H, WANG W, SU L, et al. Deep transfer learning for underwater direction of arrival using one vector sensor[J]. The Journal of the Acoustical Society of America, 2021, 149(3): 1699-1711. doi: 10.1121/10.0003645
|
[147] |
YUAN Y, WU S, WU M, et al. Unsupervised learning strategy for direction-of-arrival estimation network[J]. IEEE Signal Processing Letters, 2021, 28: 1450-1454. doi: 10.1109/LSP.2021.3096117
|
[148] |
ZHU X, DONG H, ROSSI P S, et al. Time-frequency fused underwater acoustic source localization based on contrastive predictive coding[J]. IEEE Sensors Journal, 2022, 22(13): 13299-13308. doi: 10.1109/JSEN.2022.3179405
|
[149] |
HE W, MOTLICEK P, ODOBEZ J M. Neural network adaptation and data augmentation for multi-speaker direction-of-arrival estimation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 1303-1317. doi: 10.1109/TASLP.2021.3060257
|