
| Citation: | LIU Qidong, SHEN Xin, LIU Hailu, CONG Lu, FU Xianping. Domain-Adaptive Underwater Target Detection Method Based on GPA + CBAM[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 846-854. doi: 10.11993/j.issn.2096-3920.2023-0149 |
| [1] |
邱志明, 马焱, 孟祥尧, 等. 水下无人装备前沿发展趋势与关键技术分析[J]. 水下无人系统学报, 2023, 31(1): 1-9.
QIU Z M, MA Y, MENG X Y, et al. Analysis on the development trend and key technologies of unmanned underwater equipment[J]. Journal of Unmanned Undersea Systems, 2023, 31(1): 1-9.
|
| [2] |
郝紫霄, 王琦. 基于声呐图像的水下目标检测研究综述[J]. 水下无人系统学报, 2023, 31(2): 339-348.
HAO Z X, WANG Q. Underwater target detection based on sonar image[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 339-348.
|
| [3] |
孙杰, 王红萍, 张丹, 等. 不同颜色照明下的水下成像差异研究[J]. 水下无人系统学报, 2023, 31(4): 648-653.
SUN J, WANG H P, ZHANG D, et al. Difference between underwater imaging with illumination sources with different colors[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 648-653.
|
| [4] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Computer Vision-ECCV 2016: 14th European Conference. Amsterdam, Netherlands: ECCV, 2016: 21-37.
|
| [5] |
HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition[EB/OL]. (2015-12-10)[2023-12-30]. https://arxiv.org/abs/1512.03385.
|
| [6] |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[EB/OL]. (2016-12-25)[2023-12-30]. https://arxiv.org/abs/1612.08242.
|
| [7] |
KHODABANDEH M, VAHDAT A, RANJBAR M, et al. A robust learning approach to domain adaptive object detection[C]//IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 480-490.
|
| [8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, IEEE, 2016: 779-788.
|
| [9] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, IEEE, 2014: 580-587.
|
| [10] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
| [11] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 936-944.
|
| [12] |
HE K A M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy: ICCV, 2017: 2980-2988.
|
| [13] |
罗逸豪, 刘奇佩, 张吟, 等. 基于深度学习的水下图像目标检测综述[J]. 电子与信息学报, 2023, 45(10): 3468-3482. doi: 10.11999/JEIT221402
LUO Y H, LIU Q P, ZHANG Y, et al. A review of underwater image object detection based on deep learning[J]. Journal of Electronics and Information Technology, 2023, 45(10): 3468-3482. doi: 10.11999/JEIT221402
|
| [14] |
姚文清, 李盛, 王元阳. 基于深度学习的目标检测算法综述[J]. 科技资讯, 2023, 21(16): 185-188.
YAO W Q, LI S, WANG Y Y. Overview of deep learning based object detection algorithms[J]. Science and Technology Information, 2023, 21(16): 185-188.
|
| [15] |
SUN B, SAENKO K. Deep coral: Correlation alignment for deep domain adaptation[C]//Computer Vision-ECCV 2016 Workshops. Amsterdam, Netherlands: ECCV, 2016: 443-450.
|
| [16] |
GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: ICCV, 2015: 1440-1448.
|
| [17] |
XU M H, WANG H, NI B B, et al. Cross-domain detection via graph-induced prototype alignment[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 12352-12361.
|
| [18] |
VIDIT V, ENGILBERGE M, SALZMANN M. CLIP the Gap: A single domain generalization approach for object detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE, 2023: 3219-3229.
|
| [19] |
VIBASHAN V S, OZA P, PATEL V M. Instance relation graph guided source-free domain adaptive object detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada: IEEE, 2023: 3520-3530.
|
| [20] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//15th European Conference on Computer Vision(ECCV). Munich, Germany: ECCV, 2018: 3-19.
|
| [21] |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural net-works[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 11531-11539.
|
| [22] |
GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13(1): 723-773.
|
| [23] |
TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: Maximizing for domain invariance[EB/OL]. (2014-12-10)[2023-12-30].https://arxiv.org/abs/1412.3474v1.
|
| [24] |
SANKARANARAYANAN S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: Aligning domains using generative adversarial net-works[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 8503-8512.
|
| [25] |
XU M H, ZHANG J, NI B B, et al. Adversarial domain adaptation with domain mixup[C]//2020 AAAI conference on Technical Track: Machine Learning. New York, USA: AAAI, 2020: 6502-6509.
|
| [26] |
XIE S, ZHENG Z, CHEN L, et al. Learning semantic representations for unsupervised domain adaptation[C]//International conference on machine learning. Stockholm, Sweden: ICML, 2018: 5423-5432.
|
| [27] |
CHEN C Q, XIE W P, HUANG W B, et al. Progressive feature alignment for unsupervised domain adaptation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA: IEEE, 2019: 627-636..
|
| [28] |
PAN Y W, YAO T, LI Y H, et al. Transferrable prototypical networks for unsupervised domain adaptation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA: IEEE, 2019: 2239-2247.
|
| [29] |
HU J, SHEN L, ALBANIE G. Squeeze and excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
|
| [30] |
ZHANG H, ZU K, LU J, et al. EPSANet: An efficient pyramid squeeze attention block on convolutional neural network[EB/OL]. (2022-07-22)[2023-12-30]. https://arxiv.org/abs/2105.14447.
|
| [31] |
QIN Z Q, ZHANG P Y, WU F, et al. Fcanet: Frequency channel attention networks[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal, Canada: IEEE, 2021: 763-772.
|
| [32] |
LI X, HU X l, YANG J. Spatial group-wise enhance: Improving semantic feature learning in convolutional networks[EB/OL]. (2019-05-23)[2023-12-30]. https://arxiv.org/abs/1905.09646v1.
|
| [33] |
LIU Z Y, WANG L M, WU W N, et al. TAM: Temporal adaptive module for video recognition[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal, Canada: IEEE, 2021: 13688-13698.
|
| [34] |
LIN X W, GUO Y A, WANG J Q. Global correlation network: End-to-end joint multi-object detection and tracking[EB/OL]. (2021-04-10)[2023-12-30]. https://arxiv.org/abs/2103.12511v2.
|
| [35] |
SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA: IEEE, 2019: 6949-6958.
|