• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 5
Oct  2024
Turn off MathJax
Article Contents
NING Zemeng, LIN Sen, LI Xingran. Scattered Light Compensation Combined with Color Preservation and Contrast Balance for Underwater Image Enhancement[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 823-832. doi: 10.11993/j.issn.2096-3920.2023-0131
Citation: NING Zemeng, LIN Sen, LI Xingran. Scattered Light Compensation Combined with Color Preservation and Contrast Balance for Underwater Image Enhancement[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 823-832. doi: 10.11993/j.issn.2096-3920.2023-0131

Scattered Light Compensation Combined with Color Preservation and Contrast Balance for Underwater Image Enhancement

doi: 10.11993/j.issn.2096-3920.2023-0131
  • Received Date: 2023-10-22
  • Accepted Date: 2024-01-05
  • Rev Recd Date: 2023-12-17
  • Available Online: 2024-02-07
  • In view of color deviation, low contrast, and blurring in underwater images, an underwater image enhancement method based on scattered light compensation combined with color preservation and contrast balance was proposed. Firstly, the relative total variational model was used to separate the structure and texture layer of the image. Specifically, the color deviation of the structural layer was corrected by defining a compensation coefficient error matrix based on the RGB spatial mapping, and the texture layer was enhanced by filtering separation and fusion to prevent the initial feature loss of the image. The enhanced texture layer was superimposed with the structural layer to obtain the output of the first layer. Besides, in the contrast balance module, color preservation-contrast limiting adaptive histogram equalization based on spatial transformation was performed to further improve the contrast and brightness. Finally, the enhanced results of the two layers were fused to output the image. Comparison conducted on different datasets verifies that the proposed method has better performance in balancing color deviation, enhancing details, and deblurring, which has practical application value in unmanned undersea system-based vision tasks.

     

  • loading
  • [1]
    王丹, 张子玉, 赵金宝, 等. 基于常散射假设和同态滤波的水下图像增强算法[J]. 水下无人系统学报, 2021, 29(2): 210-217.

    WANG D, ZHANG Z Y, ZHAO J B, et al. Underwater image enhancement algorithm based on constant scattering assumption and homomorphic filtering[J]. Journal of Unmanned Undersea Systems, 2021, 29(2): 210-217.
    [2]
    姚鹏, 刘玉会. 基于Underwater-CUT模型的水下图像增强算法[J]. 水下无人系统学报, 2022, 30(5): 605-611.

    YAO P, LIU Y H. Underwater image enhancement based on Underwater-CUT model[J]. Journal of Unmanned Undersea Systems, 2022, 30(5): 605-611.
    [3]
    LEI X, WANG H, SHEN J, et al. Underwater image enhancement based on color correction and complementary dual image multi-scale fusion[J]. Applied Optics, 2022, 61: 5304-14. doi: 10.1364/AO.456368
    [4]
    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33: 2341-52. doi: 10.1109/TPAMI.2010.168
    [5]
    HOU G, LI J, WANG G, et al. A novel dark channel prior guided variational framework for underwater image restoration[J]. Journal of Visual Communication and Image Representation, 2020, 66: 102732. doi: 10.1016/j.jvcir.2019.102732
    [6]
    LIANG Z, DING X, WANG Y, et al. GUDCP: Generalization of underwater dark channel prior for underwater image restoration[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4879-84. doi: 10.1109/TCSVT.2021.3114230
    [7]
    ZHOU J, YAN Y, CHU W, et al. Underwater image restoration via backscatter pixel prior and color compensation[J]. Engineering Applications of Artificial Intelligence, 2022, 111: 104785. doi: 10.1016/j.engappai.2022.104785
    [8]
    ZHANG W, ZHUANG P, SUN H, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement[J]. IEEE Transactions on Image Processing, 2022, 31: 3997-4010. doi: 10.1109/TIP.2022.3177129
    [9]
    LI X, HOU G, LI K, et al. Enhancing underwater image via adaptive color and contrast enhancement, and denoising[J]. Engineering Applications of Artificial Intelligence, 2022, 111: 104759. doi: 10.1016/j.engappai.2022.104759
    [10]
    ZHANG W, PAN X, XI X, et al. Color correction and adaptive contrast enhancement for underwater image enhancement[J]. Computers & Electrical Engineering, 2021, 91: 106981.
    [11]
    ZHUANG P, LI C, WU J, et al. Bayesian Retinex underwater image enhancement[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104171. doi: 10.1016/j.engappai.2021.104171
    [12]
    ZHUANG P, DING X. Underwater image enhancement using an edge-preserving filtering retinex algorithm[J]. Multimed Tools Appl, 2020, 79: 17257-77. doi: 10.1007/s11042-019-08404-4
    [13]
    ZHUANG P, WU J, PORIKLI F, et al. Underwater image enhancement with hyper-laplacian reflectance priors[J]. IEEE Transactions on Image Processing, 2022, 31: 5442-55. doi: 10.1109/TIP.2022.3196546
    [14]
    WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement[C]//24th IEEE International Conference on Image Processing(ICIP). Beijing, China: IEEE, 2017: 1382-86.
    [15]
    LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376-89. doi: 10.1109/TIP.2019.2955241
    [16]
    YANG M, HU K, DU Y, et al. Underwater image enhancement based on conditional generative adversarial network[J]. Signal Processing: Image Communication, 2020, 81: 115723. doi: 10.1016/j.image.2019.115723
    [17]
    林森, 迟凯晨, 唐延东. 基于复原结构与增强纹理融合的水下图像清晰化[J]. 控制与决策, 2022, 37(3): 635-644.

    LIN S, CHI K C, TANG Y D. Underwater image sharpening based on fusion of restored structure and enhanced texture[J]. Journal of Control and Decision, 2022, 37(3): 635-644.
    [18]
    ZHOU J, WE X, SHI J, et al. Underwater image enhancement method with light scattering characteristics[J]. Computers & Electrical Engineering, 2022, 100: 107898.
    [19]
    WENG C C, CHEN H, FUH C S. A novel automatic white balance method for digital still cameras[J]. IEEE International Symposium on Circuits and Systems, 2005, 4: 3801-04.
    [20]
    LIN S, ZHANG R, NING Z, et al. TCRN: A two-step underwater image enhancement network based on triple-color space feature reconstruction[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1221. doi: 10.3390/jmse11061221
    [21]
    PENG Y, CAO K, COSMAN P C. Generalization of the dark channel prior for single image restoration[J]. IEEE Transactions on Image Processing, 2018, 27: 2856-68. doi: 10.1109/TIP.2018.2813092
    [22]
    ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2018, 27: 379-393. doi: 10.1109/TIP.2017.2759252
    [23]
    LI C, TANG S, KWAN H, et al. Color correction based on CFA and enhancement based on Retinex with dense pixels for underwater images[J]. IEEE Access, 2020, 8: 155732-41. doi: 10.1109/ACCESS.2020.3019354
    [24]
    LI X, HOU G, TAN L, et al. A hybrid framework for underwater image enhancement[J]. IEEE Access, 2020, 8: 197448-62. doi: 10.1109/ACCESS.2020.3034275
    [25]
    NAIK A, SWARNAKAR A, MITTAL K. Shallow-UWnet: Compressed model for underwater image enhancement[C]//Proceedings of the AAAI Conference on Artificial Intelligence. [S.l.]: AAAI, 2021: 15853-54.
    [26]
    CHEN Y, PEI S. Domain adaptation for underwater image enhancement via content and style separation[J]. IEEE Access, 2022, 10: 90523-34. doi: 10.1109/ACCESS.2022.3201555
    [27]
    YANG N, ZHONG Q, LI K, et al. A reference-free underwater image quality assessment metric in frequency domain[J]. Signal Process, 2021, 94: 116218.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article Views(458) PDF Downloads(150) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return