• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 5
Oct  2024
Turn off MathJax
Article Contents
KANG Songyi, XU Jie, LU Xi, WANG Shushan, JIA Xiyu. J-C Constitutive Relation at Low Strain Rates for DNAN-Based Aluminium Explosives[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 923-930. doi: 10.11993/j.issn.2096-3920.2023-0130
Citation: KANG Songyi, XU Jie, LU Xi, WANG Shushan, JIA Xiyu. J-C Constitutive Relation at Low Strain Rates for DNAN-Based Aluminium Explosives[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 923-930. doi: 10.11993/j.issn.2096-3920.2023-0130

J-C Constitutive Relation at Low Strain Rates for DNAN-Based Aluminium Explosives

doi: 10.11993/j.issn.2096-3920.2023-0130
  • Received Date: 2023-10-19
  • Accepted Date: 2024-02-29
  • Rev Recd Date: 2024-02-21
  • Available Online: 2024-09-11
  • The drop response problem of the explosive charge is a typical low-velocity impact ignition problem, which exhibits the characteristics of low strain rate, long pulse width, and small pulse, and it is significantly different from the high-velocity impact ignition. In order to study the dynamic mechanical characteristics of a typical underwater weapon warhead charge drop conditions, the dynamic compression test of DNAN-based aluminum explosives was carried out by using the split Hopkinson pressure bar(SHPB), and the normal strain rate loading was achieved by the incident wave shaping technique. The stress-strain curves of DNAN-based aluminum explosives at five low strain rates, 80, 180, 28, 360, and 440 s−1 were obtained under the conditions of normal temperature and normal pressure. The Johnson-Cook(J-C) constitutive model was used to fit the parameters of the test data and verified by numerical simulation. The results show that the elastic modulus, yield strength, yield strain, failure stress, and failure strain of DNAN-based aluminum explosives all increase with the increase in strain rate; using the fitted J-C constitutive parameters can well restore the dynamic mechanical behaviors of DNAN-based aluminum explosives at low strain rate in numerical simulation, and it can provide strong data support for the related numerical simulation calculation of the drop safety.

     

  • loading
  • [1]
    王新颖, 王树山, 王绍慧, 等. 典型水中战斗部炸药装药跌落撞击响应特性[J]. 兵工学报, 2021, 42(S1): 33-39.

    WANG X Y, WANG S S, WANG S H, et al. Drop impact response characteristics of typical explosive charge in underwater warhead[J]. Acta Armamentarii, 2021, 42(S1): 33-39.
    [2]
    HORIE Y. Shock wave science and technology reference library, Vol. 2: Solids I[M]. Berlin Heidelberg: Springer, 2007.
    [3]
    李尚昆, 黄西成, 王鹏飞. 高聚物黏结炸药的力学性能研究进展[J]. 火炸药学报, 2016, 39(4): 1-11.

    LI S K, HUANG X C, WANG P F. Recent advances in the investigation on mechanical properties of PBX[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 1-11.
    [4]
    CAMPBELL A W, DAVIS W C, TRAVIS J R. Shock initiation of detonation in liquid explosives[J]. The Physics of Fluids, 1961, 4(4): 498-510. doi: 10.1063/1.1706353
    [5]
    XIAO Y C, WANG Z Y, WANG R S, et al. A viscoelastic-viscoplastic constitutive model for polymer bonded explosives under low impact loading[J]. Scientific Reports, 2022, 12(1): 21845. doi: 10.1038/s41598-022-26525-z
    [6]
    PUSHKOV V A, MIKHAILOV A L, TSIBIKOV A N, et al. Studying the characteristics of explosives under dynamic load using the split Hopkinson pressure bar technique[J]. Combustion, Explosion, and Shock Waves, 2021, 57(1): 112-121. doi: 10.1134/S0010508221010135
    [7]
    FENG X J, FENG B, XUE L X, et al. Mechanical properties and constitutive equation of pressed CL-20 based aluminized explosives[J]. Fire P hys Chem, 2021, 1(3): 185-189. doi: 10.1016/j.fpc.2021.08.001
    [8]
    胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展[J]. 爆炸与冲击, 2020, 40(1): 4-17.

    HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion and Shock Waves, 2020, 40(1): 4-17.
    [9]
    李东伟, 苗飞超, 张向荣, 等. 2, 4-二硝基苯甲醚基不敏感熔注炸药动态力学性能[J]. 兵工学报, 2021, 42(11): 2344-2349.

    LI D W, MIAO F C, ZHANG X R, et al. Dynamic mechanical properties of an insensitive DNAN-based melt-cast explosive[J]. Acta Armamentarii, 2021, 42(11): 2344-2349.
    [10]
    LESUER D. Experimental investigations of material models for Ti-6A1-4V and 2024-T3: UCRL-ID-134691[R]. California USA: Lawrence Livermore National Laboratory(LLNL), 1999: 1-28.
    [11]
    孙文旭, 罗智恒, 唐明峰, 等. PBX-1炸药的力学性能和本构关系[J]. 爆炸与冲击, 2019, 39(7): 39-45.

    SUN W X, LUO Z H, TANG M F, et al. Compressive mechanical properties and constitutive relations of PBX-1[J]. Explosion and Shock Waves, 2019, 39(7): 39-45.
    [12]
    李俊玲, 王硕, 傅华, 等. SHPB实验加载方式对PBX炸药力学响应的影响研究[J]. 含能材料, 2019, 27(10): 824-829.

    LI J L, WANG S, FU H, et al. Investigation into the influences of SHPB loading ways on the mechanical response of PBX[J]. Chinese Journal of Energetic Materials, 2019, 27(10): 824-829.
    [13]
    徐先勇, 李志华. 水雷炸药现状分析及发展方向的思考[J]. 舰船电子工程, 2015, 35(10): 14-16,155.

    XU X Y, LI Z H. Present and prospect of mine charging[J]. Ship Electronic Engineering, 2015, 35(10): 14-16,155.
    [14]
    焦纲领, 朱曦全, 陈津虎. 海军战术导弹贮存试验方法与寿命评估研究[J]. 强度与环境, 2020, 47(5): 42-47.

    JIAO G L, ZHU X Q, CHEN J H. Research on storage test method and life evaluation of naval tactical missile[J]. Structure & Environment Engineering, 2020, 47(5): 42-47.
    [15]
    Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article Views(292) PDF Downloads(27) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return