
| Citation: | KANG Songyi, XU Jie, LU Xi, WANG Shushan, JIA Xiyu. J-C Constitutive Relation at Low Strain Rates for DNAN-Based Aluminium Explosives[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 923-930. doi: 10.11993/j.issn.2096-3920.2023-0130 |
| [1] |
王新颖, 王树山, 王绍慧, 等. 典型水中战斗部炸药装药跌落撞击响应特性[J]. 兵工学报, 2021, 42(S1): 33-39.
WANG X Y, WANG S S, WANG S H, et al. Drop impact response characteristics of typical explosive charge in underwater warhead[J]. Acta Armamentarii, 2021, 42(S1): 33-39.
|
| [2] |
HORIE Y. Shock wave science and technology reference library, Vol. 2: Solids I[M]. Berlin Heidelberg: Springer, 2007.
|
| [3] |
李尚昆, 黄西成, 王鹏飞. 高聚物黏结炸药的力学性能研究进展[J]. 火炸药学报, 2016, 39(4): 1-11.
LI S K, HUANG X C, WANG P F. Recent advances in the investigation on mechanical properties of PBX[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4): 1-11.
|
| [4] |
CAMPBELL A W, DAVIS W C, TRAVIS J R. Shock initiation of detonation in liquid explosives[J]. The Physics of Fluids, 1961, 4(4): 498-510. doi: 10.1063/1.1706353
|
| [5] |
XIAO Y C, WANG Z Y, WANG R S, et al. A viscoelastic-viscoplastic constitutive model for polymer bonded explosives under low impact loading[J]. Scientific Reports, 2022, 12(1): 21845. doi: 10.1038/s41598-022-26525-z
|
| [6] |
PUSHKOV V A, MIKHAILOV A L, TSIBIKOV A N, et al. Studying the characteristics of explosives under dynamic load using the split Hopkinson pressure bar technique[J]. Combustion, Explosion, and Shock Waves, 2021, 57(1): 112-121. doi: 10.1134/S0010508221010135
|
| [7] |
FENG X J, FENG B, XUE L X, et al. Mechanical properties and constitutive equation of pressed CL-20 based aluminized explosives[J]. Fire P hys Chem, 2021, 1(3): 185-189. doi: 10.1016/j.fpc.2021.08.001
|
| [8] |
胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展[J]. 爆炸与冲击, 2020, 40(1): 4-17.
HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement[J]. Explosion and Shock Waves, 2020, 40(1): 4-17.
|
| [9] |
李东伟, 苗飞超, 张向荣, 等. 2, 4-二硝基苯甲醚基不敏感熔注炸药动态力学性能[J]. 兵工学报, 2021, 42(11): 2344-2349.
LI D W, MIAO F C, ZHANG X R, et al. Dynamic mechanical properties of an insensitive DNAN-based melt-cast explosive[J]. Acta Armamentarii, 2021, 42(11): 2344-2349.
|
| [10] |
LESUER D. Experimental investigations of material models for Ti-6A1-4V and 2024-T3: UCRL-ID-134691[R]. California USA: Lawrence Livermore National Laboratory(LLNL), 1999: 1-28.
|
| [11] |
孙文旭, 罗智恒, 唐明峰, 等. PBX-1炸药的力学性能和本构关系[J]. 爆炸与冲击, 2019, 39(7): 39-45.
SUN W X, LUO Z H, TANG M F, et al. Compressive mechanical properties and constitutive relations of PBX-1[J]. Explosion and Shock Waves, 2019, 39(7): 39-45.
|
| [12] |
李俊玲, 王硕, 傅华, 等. SHPB实验加载方式对PBX炸药力学响应的影响研究[J]. 含能材料, 2019, 27(10): 824-829.
LI J L, WANG S, FU H, et al. Investigation into the influences of SHPB loading ways on the mechanical response of PBX[J]. Chinese Journal of Energetic Materials, 2019, 27(10): 824-829.
|
| [13] |
徐先勇, 李志华. 水雷炸药现状分析及发展方向的思考[J]. 舰船电子工程, 2015, 35(10): 14-16,155.
XU X Y, LI Z H. Present and prospect of mine charging[J]. Ship Electronic Engineering, 2015, 35(10): 14-16,155.
|
| [14] |
焦纲领, 朱曦全, 陈津虎. 海军战术导弹贮存试验方法与寿命评估研究[J]. 强度与环境, 2020, 47(5): 42-47.
JIAO G L, ZHU X Q, CHEN J H. Research on storage test method and life evaluation of naval tactical missile[J]. Structure & Environment Engineering, 2020, 47(5): 42-47.
|
| [15] |
Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548.
|