• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 5
Oct  2024
Turn off MathJax
Article Contents
LIANG Xiaoling, DENG Jianhui, CHEN Sijun, ZHUANG Deyu. Task Availability Capability Assessment Based onCharacteristic Parameters[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 940-947. doi: 10.11993/j.issn.2096-3920.2023-0126
Citation: LIANG Xiaoling, DENG Jianhui, CHEN Sijun, ZHUANG Deyu. Task Availability Capability Assessment Based onCharacteristic Parameters[J]. Journal of Unmanned Undersea Systems, 2024, 32(5): 940-947. doi: 10.11993/j.issn.2096-3920.2023-0126

Task Availability Capability Assessment Based onCharacteristic Parameters

doi: 10.11993/j.issn.2096-3920.2023-0126
  • Received Date: 2023-10-14
  • Accepted Date: 2024-01-05
  • Rev Recd Date: 2023-12-18
  • Available Online: 2024-02-07
  • To evaluate system task availability under the condition of real-time fault feature parameter input, a method of assessing task availability capability based on characteristic parameters was proposed. By introducing the neuro-fuzzy system(NFS), a vulnerability model of the aviation insurance system was established, and fuzzy rules were integrated into the framework of neural networks to establish an assessment model for system task availability capability. This method combined the reasoning ability of fuzzy logic and the infinite approximation function ability of neural networks to create an alternative model of the real system, which was more universal. Moreover, an intelligent optimization algorithm was used to make the alternative model approach to the real model, getting rid of the influence of unknown weight coefficients in the system that relied on experts or experience and endowing the fuzzy neural network(FNN) with learning capabilities. The experimental results and analysis show that the assessment model is comprehensive and reasonable and can be extended to the underwater field to assess the mission capabilities of navigation support systems and naval ship systems.

     

  • loading
  • [1]
    孙诗南. 现代航空母舰[M]. 上海: 上海科学普及出版社, 2000: 84-85.
    [2]
    Wasmund T L. New model to evaluate weapon effects and platform vulnerability: AJEM[J]. Wstiac Newsletter, 2001, 2: 1-3.
    [3]
    PUSEY H C. Technical information support for survivability[J]. The Shock and Vibration, 1983, 53(1): 21-31.
    [4]
    谢宗仁, 吕建伟, 徐一帆, 等. 大型武器装备总体战备完好性的多层次协调优化[J]. 系统工程与电子技术, 2017, 39(12): 2729-2737. doi: 10.3969/j.issn.1001-506X.2017.12.15

    XIE Z R, Lü J W, XU Y F, et al. Multi-level coordinated optimization of major weapon equipment’s overall operational readiness indicators[J]. Systems Engineering and Electronics, 2017, 39(12): 2729-2737. doi: 10.3969/j.issn.1001-506X.2017.12.15
    [5]
    程莉莉, 罗威, 胡芷毅, 等. 舰载作战系统战备状态评价方法研究[J]. 计算机与数字工程, 2017, 45(9): 1790-1794. doi: 10.3969/j.issn.1672-9722.2017.09.021

    CHENG L L, LUO W, HU Z Y, et al. Research on evaluation of the ship-borne combat system operational states[J]. Computer & Digital Engineering, 2017, 45(9): 1790-1794. doi: 10.3969/j.issn.1672-9722.2017.09.021
    [6]
    彭辉, 姜强, 邓建辉, 等. 基于云模型的舰船战备完好性评估方法研究[J]. 中国舰船研究, 2021, 16(6): 61-71.

    PENG H, JIANG Q, DENG J H, et al. Warship operational readiness integrity evaluation method based on cloud model[J]. Journal of Ship Research, 2021, 16(6): 61-71.
    [7]
    KORIEM S M. A fuzzy Petri net tool for modeling and verification of knowledge-based systems[J]. The Computer Journal, 2000, 43(3): 206-223. doi: 10.1093/comjnl/43.3.206
    [8]
    MAGOTT J, SKROBANEK P. Method of time Petri net analysis for analysis of fault trees with time dependencies[J]. IEEE Proceedings Computers and Digital Techniques, 2002, 149(6): 257-271. doi: 10.1049/ip-cdt:20020804
    [9]
    LI X O, YU W, FELIPE L R. Dynamic knowledge inference and learning under adaptive fuzzy Petri net framework[J]. IEEE Transactions on Systems, Man & Cybernetics: Part C-Applications & Reviews, 2000, 30(4): 442-449.
    [10]
    LI X O, FELIPE L R. Adaptive fuzzy Petri nets for dynamic knowledge representation and inference[J]. Expert Systems with Applications, 2000, 19(3): 235-241. doi: 10.1016/S0957-4174(00)00036-1
    [11]
    夏世芬, 毛大会, 徐杨. 一种算子模糊逻辑系统及其Petri网推理算法[J]. 模糊系统与数学, 2008, 22(1): 7-14.
    [12]
    SHI Y, EBERHART R C. A modified particle swarm optimizer[C]//IEEE International Conference of Evolutionary Computation. Alaska: IEEE, 1998: 69-73.
    [13]
    CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Washington, USA: IEEE, 1999: 1951-1957.
    [14]
    SCHOUTEN N J, SALMAN M A, KHEIR N A. Fuzzy logic control for parallel hybrid vehicles[J]. IEEE Trans on Control Systems Technology, 2002, 10(3): 460-468. doi: 10.1109/87.998036
    [15]
    MENDEL J M. Type-2 fuzzy sets and systems: An overview[J]. IEEE Computational Intelligence Magazine, 2007, 2(1): 20-29. doi: 10.1109/MCI.2007.380672
    [16]
    MENDEL J M. Advances in type-2 fuzzy sets and systems[J]. Information Sciences, 2007, 177(1): 84-110. doi: 10.1016/j.ins.2006.05.003
    [17]
    李典庆, 张圣坤. 水面舰船生命力研究现状及方向概述[J]. 造船技术, 2003(5): 3-6, 10. doi: 10.3969/j.issn.1000-3878.2003.05.001
    [18]
    SHU M H, CHENG C H, CHANG J R. Using intuitionistic fuzzy setsfor fault-tree analysis on printed circuit board assembly[J]. Microelectronics Reliability, 2006, 46: 2139-2148. doi: 10.1016/j.microrel.2006.01.007
    [19]
    ISAZADEH A, NOURI H, REZVAN M. An evolutionary system architecture for information protection[J]. Applied Mathematics and Computation, 2008, 197: 687-691. doi: 10.1016/j.amc.2007.08.038
    [20]
    DONG Y H, YU D T. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis[J]. Journal of Loss Prevention in the Process Industries, 2005, 18(2): 83-88.
    [21]
    OLARU C, WEHENKEL L. A complete fuzzy decision tree technique[J]. Fuzzy Sets and Systems, 2003, 138(2): 221-254. doi: 10.1016/S0165-0114(03)00089-7
    [22]
    DENG W, LIU H L, XU J J, et al. An improved quantum-inspired differential evolution algorithm for deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7319-7327. doi: 10.1109/TIM.2020.2983233
    [23]
    TALPUR N, ABDULKADIR S J, ALHUSSIAN H, et al. Deep neuro-fuzzy system application trends, challenges, and future perspectives: A systematic survey[J]. Artificial intelligence review, 2023, 56(2): 865-913. doi: 10.1007/s10462-022-10188-3
    [24]
    SHIHABUDHEEN K V, PILLAI G N. Recent advances in neuro-fuzzy system: A survey[J]. Knowledge-Based Systems, 2018, 152: 136-162. doi: 10.1016/j.knosys.2018.04.014
    [25]
    TAN H, REN Z Y, YAN W, et al. A wind power accommodation capability assessment method for multi-energy microgrids[J]. IEEE Transactions on Sustainable Energy, 2021, 12(4): 2482-2492. doi: 10.1109/TSTE.2021.3103910
    [26]
    HOSSEINI S A, ABBASZADEH S A, ASHEGHI R. Prediction of bedload transport rate using a block combined network structure[J]. Hydrological Sciences Journal, 2022, 67(1): 117-128. doi: 10.1080/02626667.2021.2003367
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(302) PDF Downloads(86) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return