• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 32 Issue 3
Jun  2024
Turn off MathJax
Article Contents
WU Haoqi, LUO Zhengyuan, BAI Bofeng. Study on Reaction Kinetics Parameters and Combustion Phenomena of Li/SF6[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 558-564. doi: 10.11993/j.issn.2096-3920.2023-0108
Citation: WU Haoqi, LUO Zhengyuan, BAI Bofeng. Study on Reaction Kinetics Parameters and Combustion Phenomena of Li/SF6[J]. Journal of Unmanned Undersea Systems, 2024, 32(3): 558-564. doi: 10.11993/j.issn.2096-3920.2023-0108

Study on Reaction Kinetics Parameters and Combustion Phenomena of Li/SF6

doi: 10.11993/j.issn.2096-3920.2023-0108
  • Received Date: 2023-09-18
  • Accepted Date: 2023-10-30
  • Rev Recd Date: 2023-10-29
  • Available Online: 2024-01-18
  • In order to investigate the combustion phenomenon and reaction kinetics parameters of Li/SF6 under different temperature and pressure conditions, the Li/SF6 combustion test platform with shock wave-induced high pressure thermal load excitation was used to measure the ignition delay period at the temperature of 830~1 400 K and the pressure range of 0.8~11 atm. The laws of Li/SF6 combustion process and basic luminescence phenomena were investigated by the visual experiment section. Based on the typical Arrhenius dependence between ignition delay period and temperature and pressure, the reaction kinetics parameters were obtained by multiple linear regression method. The results show that the ignition delay period of Li/SF6 combustion decreases with the increase in temperature and pressure, and the luminescence phenomenon gradually changes from a red isolated fire nucleus to a white bright flame with the increase in pressure. The pre-index factor A, exponential factor N, and activation energy Ea are obtained based on the experimentally measured ignition delay period, which provides an important basis for the identification of combustion characteristics and the construction of numerical simulation.

     

  • loading
  • [1]
    Qu Y, Zou C, Xia W, et al. Shock tube experiments and numerical study on ignition delay times of ethane in super lean and ultra-lean combustion[J]. Combustion and Flame, 2022, 246: 112462.
    [2]
    徐胜利, 张英佳, 黄佐华, 等. 激波管研究煤油/空气混合气的自着火特性[J]. 科学通报, 2011, 56(1): 88-96.
    [3]
    Hartmann M, Gushterova I, Fikri M, et al. Auto ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling[J]. Combustion and Flame, 2011, 158(1): 172-178.
    [4]
    Davidson D F, Oehlschlaeger M A, Hanson R K. Methyl concentration time-histories during Iso-octane and N-heptane oxidation and pyrolysis[J]. Proceedings of the Combustion Institute, 2007, 31(1): 321-328.
    [5]
    黄文林, 孙五川, 张英佳, 等. 二甲醚低温低压自点火行为的实验和理论研究[J]. 工程热物理学报, 2021, 42(4): 1070-1079.

    Huang Wenlin, Sun Wuchuan, Zhang Yingjia, et al. Experimental and theoretical study of dimethyl ether auto-ignition at low temperature and low pressure[J]. Journal of Engineering Thermophysics, 2021, 42(4): 1070-1079.
    [6]
    Thomas W M, Herman K, Rodney L B. Shock tube ignition of AL/MG alloys in water vapor and argon[J]. Experimental Thermal and Fluid Science, 1993, 7(2): 154-154.
    [7]
    郑波, 胡栋, 丁儆. 铝粉尘激波点火的实验研究[J]. 爆炸与冲击, 1997(2): 174-181.

    Zheng Bo, Hu Dong, Ding Jing. Experimental study of shuck wave ignition of aluminum dust[J]. Explosion and Shock Waves, 1997(2): 174-181.
    [8]
    梁金虎. 煤油点火及铝粉点火和燃烧特性的激波管研究[D]. 重庆: 重庆大学, 2015.
    [9]
    Zhang F. Detonation in reactive solid particle-gas flow [J]. Journal of Propulsion and Power. 2006, 22 (6): 1289-1309.
    [10]
    郑邯勇, 卜建杰. 六氟化硫在熔融锂中的浸没喷射反应过程[J]. 化工学报, 1996, 47(6): 656-662.

    Zheng Hanyong, Bu Jianjie. The submerged jet reaction process of sulfur hexafluoride into molten lithium[J]. CIESC Journal, 1996, 47(6): 656-662.
    [11]
    张文群, 张振山. 一种非理想多相共存体系平衡的通用计算方法[J]. 兵器材料科学与工程, 2002, 25(6): 8-11.

    Zhang Wenqun, Zhang Zhenshan. General computational method of phase equilibrium of multiphase non-ideal systems[J]. Ordnance Material Science and Engineering, 2002, 25(6): 8-11.
    [12]
    张立超. 高温化学蓄热器的技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.
    [13]
    祝晓瑜. Li/SF6表面喷射反应器内燃烧流场数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
    [14]
    张会强, 林文漪, 周力行. 锂/六氟化硫气——液浸没有反应射流和燃烧的数值研究[J]. 工程热物理学报, 1996, 17(4): 482-486.
    [15]
    Lyu H Y, Chen L D. On the estimates of Li2S thermodynamic properties for prediction of Li-SF6 wick combustion[J]. Journal of Physics & Chemistry of Solids, 2013, 46(12): 1427-1429.
    [16]
    Chan S H, Tan C C, Zhao Y G, et al. Li-SF6 combustion in stored chemical energy propulsion systems[J]. Technical Report. 1991, 23(1): 1139-1146.
    [17]
    Parnell L A, Nelson R S, Ogden T R, et al. Flash and real-time radiographic diagnostics of closed liquid metal combustion for underwater propulsion[C]//IEEE 25th Intersociety Energy Conversion Engineering Conference. Reno, Nevada: IEEE, 1990.
    [18]
    宗潇, 李宏伟, 韩新波, 等. 气液射流反应流动特性的数值研究[J]. 西安交通大学学报, 2020, 54(3): 35-40, 196.

    Zong Xiao, Li Hongwei, Han Xinbo, et al. Numerical investigation on flow characteristics of gas-lquid reactive jet[J]. Journal of Xi’an Jiaotong University, 2020, 54(3): 35-40, 196.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(390) PDF Downloads(49) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return