
| Citation: | YIN Gaofang, ZHAO Nanjing, DONG Ming, MA Mingjun, GAN Tingting, QIN Zhisong, WANG Xiang, HUANG Peng, HU Xiang. Research on Fast in Situ Sensing Technology for Marine Gross Primary Productivity Based on Fluorescence Dynamics Method[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 633-639. doi: 10.11993/j.issn.2096-3920.2023-0072 |
| [1] |
Yvon-Durocher G, Allen A P, Cellamare M, et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton[J]. PLOS Biology, 2015, 13(12): 1002324. doi: 10.1371/journal.pbio.1002324
|
| [2] |
Watson R A, Nowara G B, Hartmann K, et al. Marine foods sourced from farther as their use of global ocean primary production increases[J]. Nature Communications, 2015, 6: 7365. doi: 10.1038/ncomms8365
|
| [3] |
Holt J, Schrum C, Cannaby H, et al. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas[J]. Progress in Oceanography, 2016, 140: 91-115. doi: 10.1016/j.pocean.2015.11.004
|
| [4] |
Claustre H, Antoine D, Boehme L, et al. Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles[C]//Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Venice, Italy: ESA, 2010: 593-612.
|
| [5] |
Hemsley V S, Smyth T J, Martin A P, et al. Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic[J]. Environmental Science & Technology, 2015, 49(19): 11612-11621.
|
| [6] |
Strasserf R J, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria[J]. Photochemistry and Photobiology, 1995, 61(1): 32-42. doi: 10.1111/j.1751-1097.1995.tb09240.x
|
| [7] |
Falkowski P G, Kolber Z. Estimation of phytoplankton photosynthesis by active fluorescence[J]. Ices Mar. Sci. Symp, 1993, 197: 92-103.
|
| [8] |
Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research, 1986, 10: 51-62. doi: 10.1007/BF00024185
|
| [9] |
Suggett D J, Moore C M, Hickman A E, et al. Interpretation of fast repetition rate(FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state[J]. Mar. Ecol. Prog. Ser, 2009, 376(1): 1-19.
|
| [10] |
Corno G, Letelier R M, Abbott M R, et al. Assessing primary production variability in the north pacific subtropical gyre: a comparison of fast repetition rate fluorometry and C-14 measurements[J]. Journal of Phycology, 2006, 42(1): 51-60. doi: 10.1111/j.1529-8817.2006.00163.x
|
| [11] |
Melrose D C, Oviatt C A, O’Reilly J E, et al. Comparisons of fast repetition rate fluorescence estimated primary production and 14C uptakeby phytoplankton[J]. Marine Ecology Progress Series, 2006, 311: 37-46. doi: 10.3354/meps311037
|
| [12] |
Suggett D J, Oxborough K, Baker N R, et al. Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton[J]. European Journal of Phycology, 2003, 38(4): 371-384. doi: 10.1080/09670260310001612655
|
| [13] |
Stirbet A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem Ⅱ: Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology. B, Biology, 2011, 104(1-2): 236-257. doi: 10.1016/j.jphotobiol.2010.12.010
|
| [14] |
Falkowski P G, Raven J A. Aquatic photosynthesis[M]. New Jersey: Princeton University Press, 2013.
|
| [15] |
Yin G F, Zhao N J, Shi C Y, et al. Phytoplankton photosynthetic rate measurement using tunable pulsed light induced fluorescence kinetics[J]. Optics Express, 2018, 26(6): 293-300. doi: 10.1364/OE.26.00A293
|
| [16] |
王翔, 殷高方, 赵南京, 等. 荧光动力学法藻类初级生产力测量中光合尺寸单元校正方法研究[J]. 光学学报, 2021, 41(17): 153-159.
Wang Xiang, Yin Gaofang, Zhao Nanjing, et al. Correction method of photosynthetic size unit in algae primary productivity measurement using fluorescence kinetics[J]. Acta Optica Sinica, 2021, 41(17): 153-159.
|
| [17] |
覃志松, 殷高方, 赵南京, 等. 基于光脉冲诱导快相与弛豫荧光的光合作用参数测量技术[J]. 光子学报, 2017, 46(9): 82-89.
Qin Zhisong, Yin Gaofang, Zhao Nanjing, et al. Photosynthesis parameters measurement technology based on fast phase anc relaxation fluorescence induced by optical pulses[J]. Acta Photonica Sinica, 2017, 46(9): 82-89.
|