
| Citation: | CHEN Kai, LUO Xianhu, SU Jianye, SUN Zhen, TIAN Ji, DENG Xianming. Overview of Underwater Electric Filed Measurement Technology Research[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 527-544. doi: 10.11993/j.issn.2096-3920.2023-0070 |
| [1] |
Young F B, Gerrard H, Jevons W. On electrical disturbances due to tides and waves[J]. Philosophical Magazine Series, 1920, 6(40): 149-159.
|
| [2] |
Cox C S, Filloux J H, Larsen J C. Electromagnetic studies of ocean currents and electrical conductivity below the ocean floor[J]. The Sea, 1971(4): 637-693.
|
| [3] |
Filloux J H. Electric field recording on the sea floor with short span instruments[J]. Journal of Geomagnetism and Geoelectricity, 1974, 26(2): 269-279. doi: 10.5636/jgg.26.269
|
| [4] |
Filloux J H, Law L K, Yukutake T, et al. Offshore emslab-objectives, experimental phase and early results[J]. Physics of the Earth and Planetary Interiors(in English), 1989, 53(3-4): 422-431. doi: 10.1016/0031-9201(89)90027-7
|
| [5] |
Cox C S, Constable S C, Chave A D, et al. Controlled-source electromagnetic sounding of the oceanic lithosphere[J]. Nature, 1986, 320(6057): 52-54. doi: 10.1038/320052a0
|
| [6] |
Constable S C, Orange A S, Hoversten G M, et al. Marine magnetotellurics for petroleum exploration part I: a sea-floor equipment system[J]. Geophysics, 1998, 63(3): 816-825. doi: 10.1190/1.1444393
|
| [7] |
Key K, Constable S. Broadband marine MT exploration of the East Pacific rise at 9°50′ N[J]. Geophysical Research Letters, 2002, 29(22): 2054-2057.
|
| [8] |
Ellingsrud S, Eidesmo T, Johansen S, et al. Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore angola[J]. The Leading Edge, 2002, 21(10): 972-982. doi: 10.1190/1.1518433
|
| [9] |
Bekker. The future of marine CSEM[J]. First Break, 2011, 29(4): 77-81.
|
| [10] |
Mattsson J, Engelmark F, Anderson C. Towed streamer EM: The challenges of sensitivity and anisotropy[J]. First Break, 2013, 31(6): 155-159.
|
| [11] |
Goto T N, Kasaya T, Machiyama H, et al. A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea[J]. Exploration Geophysics, 2008, 39(1): 52-59. doi: 10.1071/EG08003
|
| [12] |
Yoshifumi, Kawada, Takafumi, et al. Marine self-potential survey for exploring seafloor hydrothermal ore deposits[J]. Scientific Reports, 2017, 7(1): 13552. doi: 10.1038/s41598-017-13920-0
|
| [13] |
Ohsawa M K. A new marine magnetotelluric measurement system in a shallow-water environment for hydrogeological study[J]. Journal of Applied Geophysics, 2014, 100: 23-31. doi: 10.1016/j.jappgeo.2013.10.003
|
| [14] |
魏文博, 邓明, 谭捍东, 等. 我国海底大地电磁探测技术研究的进展[J]. 地震地质, 2001, 23(2): 131-137. doi: 10.3969/j.issn.0253-4967.2001.02.001
Wei Wenbo, Deng Ming, Tan Handong, et al. Research progress of seabed magnetotelluric detection technology in China[J]. Seismology and Geology, 2001, 23(2): 131-137. doi: 10.3969/j.issn.0253-4967.2001.02.001
|
| [15] |
景建恩, 伍忠良, 邓明, 等. 南海天然气水合物远景区海可控源电磁探测试验[J]. 地球物理学报, 2016, 59(7): 2564-2572.
Jing Jianen, Wu Zhongliang, Deng Ming, et al. Marine controlled source electromagnetic detection test of natural gas hydrate prospect area in South China Sea[J]. Chinese Journal of Geophysics, 2016, 59(7): 2564-2572.
|
| [16] |
刘昂, 宰学荣, 宰敬喆, 等. 尿素改性碳纤维电场电极制备及电化学性能研究[J]. 材料开发与应用, 2017, 32(4): 19-28.
Liu Ang, Zai Xuerong, Zai Jingzhe, et al. Preparation and electrochemical properties of urea modified carbon fiber electric field electrode[J]. Development and Application of Materials, 2017, 32(4): 19-28.
|
| [17] |
刘兰军, 周亚涛, 陈家林, 等. 海洋电磁信号超低噪声同步采集系统设计[J]. 现代电子技术, 2022, 45(14): 17-22.
Liu Lanjun, Zhou Yatao, Chen Jialin, et al. Design of ultra-low noise synchronous acquisition system for marine electromagnetic signal[J]. Modern Electronic Technology, 2022, 45(14): 17-22.
|
| [18] |
李予国, Constable S. 浅水区的瞬变电磁法: 一维数值模拟结果分析[J]. 地球物理学报, 2010, 53(3): 737-742.
Li Yuguo, Constable S. Transient electromagnetic in shallow water: Insights from 1D modeling[J]. Chinese Journal of Geophysics, 2010, 53(3): 737-742. (in Chinese)
|
| [19] |
Duan S, Li Y, Pei J, et al. Carbonate imaging with magnetotellurics in a shallow-water environment, South Yellow Sea, China[J]. Journal of Applied Geophysics, 2020(178): 104076.
|
| [20] |
牟兰. 国外舰船电场特性研究及其在水雷战上的应用[J]. 舰船科学技术, 2012, 34(9): 138-142.
Mou Lan. Research on electric field characteristics of foreign ships and its application in mine warfare[J]. Ship Science and Technology, 2012, 34(9): 138-142.
|
| [21] |
王进. 舰船电场及国外电场扫雷技术研究现状[J]. 数字海洋与水下攻防, 2019, 2(3): 42-46.
Wang Jin. Research status of ship electric field and foreign electric field mine sweeping technology[J]. Digital Ocean and Underwater Warfare, 2019, 2(3): 42-46.
|
| [22] |
杨国义. 舰船水下电磁场国外研究现状[J]. 舰船科学技术, 2011, 33(12): 138-143.
Yang Guoyi. Foreign research status of ship underwater electromagnetic field[J]. Ship Science and Technology, 2011, 33(12): 138-143.
|
| [23] |
龚沈光, 卢新城. 舰船电场特性初步分析[J]. 海军工程大学学报, 2008, 20(2): 1-4, 26.
Gong Shenguang, Lu Xincheng. Preliminary analysis of ship electric field characteristics[J]. Journal of Naval University of Engineering, 2008, 20(2): 1-4, 26.
|
| [24] |
张伽伟, 熊露, 龚沈光. 运动船舶磁性船体产生的感应电场[J]. 国防科技大学学报, 2015, 37(2): 86-91.
Zhang Jiawei, Xiong Lu, Gong Shenguang. The induced electric field generated by the magnetic hull of a moving ship[J]. Journal of National University of Defense Technology, 2015, 37(2): 86-91.
|
| [25] |
姜润翔, 史建伟, 龚沈光. 船舶极低频电场信号特性分析[J]. 海军工程大学学报, 2014, 26(75): 5-8.
Jiang Runxiang, Shi Jianwei, Gong Shenguang. Characteristic analysis of extremely low frequency electric field signal of ship[J]. Journal of Naval University of Engineering, 2014, 26(75): 5-8.
|
| [26] |
Webb S C, Constable S C, Cox C S, et al. A seafloor electric field instrument[J]. Journal of Geomagnetism and Geoelectricity, 1985, 37(12): 1115-1129. doi: 10.5636/jgg.37.1115
|
| [27] |
Zai X R, Liu A Y H, Tian Y H, et al. Oxidation modification of polyacrylonitrile-based carbon fiber and its electro-chemical performance as marine electrode for electric field test[J]. Journal of Ocean University of China, 2020, 19(2): 361-368. doi: 10.1007/s11802-020-4178-x
|
| [28] |
Zhang Z. Perovskite nickelates as electric-field sensors in salt water[J]. Nature, 2018, 553(7686): 68-72. doi: 10.1038/nature25008
|
| [29] |
王志宇, 王顺, 方广有, 等. 一种新型海洋电场传感器的研究与设计[J]. 电子测量技术, 2017, 40(1): 57-61.
Wang Zhiyü, Wang Shun, Fang Guangyou, et al. Research and design of a new type of ocean electric field sensor[J]. Electronic Measurement Technology, 2017, 40(1): 57-61.
|
| [30] |
邓明, 刘志刚, 白宜诚, 等. 海底电场传感器原理及研制技术[J]. 地质与勘探, 2002(6): 43-47.
Deng Ming, Liu Zhigang, Bai Yicheng, et al. The principle and development technology of submarine electric field sensor[J]. Geology and Prospecting, 2002(6): 43-47.
|
| [31] |
申振, 宋玉苏, 张磊. 热处理对碳纤维电极性能的影响[J]. 功能材料, 2017, 48(3): 3214-3217.
Shen Zhen, Song Yüsu, Zhang Lei. Effect of heat treatment on the properties of carbon fiber electrode[J]. Journal of Functional Materials, 2017, 48(3): 3214-3217.
|
| [32] |
申振, 宋玉苏, 王烨煊, 等. Ag/AgCl和碳纤维海洋电场电极的探测特性研究[J]. 仪器仪表学报, 2018, 39(2): 211-217.
Shen Zhen, Song Yüsu, Wang Yexuan, et al. Study on the detection characteristics of Ag/AgCl and carbon fiber ocean electric field electrodes[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 211-217.
|
| [33] |
孙久哲, 赵鸿浩, 韩永康, 等. 水合肼掺氮改性碳纤维电极电化学及电场响应性能[J]. 兵工学报, 2022, 43(2): 363-371.
Sun Jiuzhe, Zhao Honghao, Han Yongkang, et al. Electrochemical and electric field response properties of hydrazine hydrate doped nitrogen modified carbon fiber electrode[J]. Acta Armamentarii, 2022, 43(2): 363-371.
|
| [34] |
贾理男, 富一博, 赵哲, 等. 钙钛矿稀土镍酸盐SmNiO3薄膜的研究进展[J]. 表面技术, 2020, 49(4): 151-160.
Jia Linan, Fu Yibo, Zhao Zhe, et al. Research progress of perovskite rare earth nickelate SmNiO3 thin films[J]. Surface Technology, 2020, 49(4): 151-160.
|
| [35] |
陈凯, 景建恩, 赵庆献, 等. 海底可控源电磁接收机及其水合物勘查应用[J]. 地球物理学报, 2017, 60(11): 4262-4272. doi: 10.6038/cjg20171114
Chen Kai, Jing Jianen, Zhao Qingxian, et al. Submarine controlled source electromagnetic receiver and its application in hydrate exploration[J]. Chinese Journal of Geophysics, 2017, 60(11): 4262-4272. doi: 10.6038/cjg20171114
|
| [36] |
Wang Z, Deng M, Chen K, et al. Development and evaluation of an ultralow-noise sensor system for marine electric field measurements[J]. Sensors & Actuators a Physical, 2014(213): 70-78.
|
| [37] |
Drung D, Storm J. Ultralow-noise chopper amplifier with low input charge injection[J]. IEEE Transactions on Instrumentation & Measurement, 2011, 60(7): 2347-2352.
|
| [38] |
Constable S C. Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding[J]. Geophysical Prospecting, 2013, 61(1): 505-532.
|
| [39] |
EMGS. Company profile[EB/OL]. [2023-07-02]. http://www.emgs.com/content/588/Company-profile, 2016.
|
| [40] |
Geir B H, Jensen H R, Kurrasch A, et al. Low noise Ag/AgCl electric field sensor system for marine CSEM and MT applications[EB/OL]. [2023-07-02]. https://xueshu.baidu.com/usercenter/paper/show?paperid=3318ab7ab304c6abf08db112cefdce17&site=xueshu_se.
|
| [41] |
QUASAR. QMax EM3[EB/OL].(2012-01-01)[2023-5-08]. https://www.quasarfs.com/success-stories/qmax-em3/.
|
| [42] |
Chen K, Deng M, Luo X, et al. A micro ocean-bottom E-field receiver geophysics[J]. Geophysics: Journal of the Society of Exploration Geophysicists, 2017, 82(5): 233-241
|
| [43] |
罗贤虎, 邱宁, 邓明, 等. MicrOBEM: 小型海底电磁接收机[J]. 物探与化探, 2022, 46(3): 544-549.
Luo Xianhu, Qiu Ning, Deng Ming, et al. MicrOBEM: A micro-ocean-bottom electromagnetic receiver[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 544-549.
|
| [44] |
Constable S, Kannberg P K, Weitemeyer K. Vulcan: A deep-towed CSEM receiver[J]. Geochemistry Geophysics Geosystems, 2016, 17(3): 1042-1064. doi: 10.1002/2015GC006174
|
| [45] |
Chen Kai, Deng M, Yu Ping, et al. A near-seafloor-towed CSEM receiver for deeper target prospecting[J]. Terr. Atmos. Ocean. Sci., 2020, 31(5): 565-577. doi: 10.3319/TAO.2020.08.03.01
|
| [46] |
王猛, 邓明, 余平, 等. 深水拖曳式大功率时频发射与多链缆多分量电磁探测系统[J]. 地球物理学报, 2022, 65(9): 3664-3673.
Wang Meng, Deng Ming, Yu Ping, et al. Deepwater towed high-power time-frequency transmission and multi-cable multi-component electromagnetic detection system[J]. Chinese Journal of Geophysics, 2022, 65(9): 3664-3673.
|
| [47] |
程锦房, 喻鹏, 张伽伟, 等. 水下电场探测定位技术应用研究现状[J]. 海军工程大学学报, 2022, 34(4): 68-74.
Cheng Jinfang, Yu Peng, Zhang Jiawei, et al. Application research status of underwater electric field detection and positioning technology[J]. Journal of Naval University of Engineering, 2022, 34(4): 68-74.
|
| [48] |
陈新刚, 喻鹏, 刘大钢. 基于自持式剖面浮标的目标电场探测方法研究[J]. 中国造船, 2020, 61(A1): 31-39.
Chen Xingang, Yu Peng, Liu Dagang. Research on target electric field detection method based on self-sus taining profile buoy[J]. Shipbuilding of China, 2020, 61(A1): 31-39.
|
| [49] |
QUASAR. E-field Sensing Buoy[EB/OL].(2012-01-01)[2023-5-08]. https://www.quasarfs.com/solutions-and-services/underwater-em-sensing/.
|
| [50] |
Yu P, Zhang J W, Cheng J F, et al. Analysis of the natural electric field at different sea depths[J]. J Instrum, 2021, 16(1): 1-7.
|
| [51] |
吕俊军, 陈凯, 苏建业, 等. 海洋中的电磁场及其应用[M]. 上海: 上海科学技术出版社, 2020.
|
| [52] |
Qualls S R, Osborn J M, Anderson M J, et al. Underwater electric potential measurements using AUVs[C]//Oceans 2015-MTS/IEEE. Washington, USA: MTS/IEEE, 2015.
|
| [53] |
Constable S, Kowalczyk P, Bloomer S. Measuring marine self-potential using an autonomous underwater vehicle[J]. Geophysical Journal International, 2018, 215(1): 49-60. doi: 10.1093/gji/ggy263
|
| [54] |
Zhu Z, Tao C, Shen J, et al. Self-potential tomography of a deep-sea polymetallic sulfide deposit on southwest indian ridge[J]. Journal of Geophysical Research-Solid Earth, 2020, 125(11): e2020JB019738. doi: 10.1029/2020JB019738
|
| [55] |
Zhu Z, Shen J, Tao C, et al. Autonomous-underwater-vehicle-based marine multicomponent self-potential method: Observation scheme and navigational correction[J]. Geoscientific Instrumentation, Methods and Data Systems, 2021(10): 35-43.
|
| [56] |
蒋礼. 长周期大地电磁多站叠加技术[D]. 武汉: 中国地质大学(武汉), 2012.
|
| [57] |
汤井田, 李晋, 肖晓, 等. 数学形态滤波与大地电磁噪声压制[J]. 地球物理学报, 2012, 55(5): 1784-1793.
Tang Jingtian, Li Jin, Xiao Xiao, et al. Mathematical morphological filtering and magnetotelluric noise suppression[J]. Chinese Journal of Geophysics, 2012, 55(5): 1784-1793.
|
| [58] |
汤井田, 刘子杰, 刘峰屹, 等. 音频大地电磁法强干扰压制试验研究[J]. 地球物理学报, 2015, 58(12): 4636-4647.
Tang Jingtian, Liu Zijie, Liu Fengyi, et al. Experimental study on strong interference suppression of audio magnetotelluric method[J]. Chinese Journal of Geophysics, 2015, 58(12): 4636-4647.
|
| [59] |
王辉, 魏文博, 金胜, 等. 基于同步大地电磁时间序列依赖关系的噪声处理[J]. 地球物理学报, 2014, 57(2): 531-545.
Wang Hui, Wei Wenbo, Jin Sheng, et al. Noise processing based on the dependence of synchronous magnetotelluric time series[J]. Chinese Journal of Geophysics, 2014, 57(2): 531-545.
|
| [60] |
徐义贤, 王家映. 基于连续小波变换的大地电磁信号谱估计方法[J]. 地球物理学报, 2000, 43(5): 677-683.
Xu Yixian, Wang Jiaying. Magnetotelluric signal spectrum estimation method based on continuous wavelet transform[J]. Chinese Journal of Geophysics, 2000, 43(5): 677-683.
|
| [61] |
Cai J. A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform[J]. Exploration Geophysics, 2012, 45(2): 63-73.
|
| [62] |
景建恩, 魏文博, 陈海燕, 等. 基于广义S变换的大地电磁测深数据处理[J]. 地球物理学报, 2012, 55(12): 4015-4022. doi: 10.6038/j.issn.0001-5733.2012.12.013
Jing Jianen, Wei Wenbo, Chen Haiyan, et al. Magnetotelluric sounding data processing based on generalized S transform[J]. Chinese Journal of Geophysics, 2012, 55(12): 4015-4022. doi: 10.6038/j.issn.0001-5733.2012.12.013
|
| [63] |
Gamble T D, Goubau W M, Clarke J. Magnetotellurics with a remote magnetic reference[J]. Geophysics, 1979, 44(1): 53-68. doi: 10.1190/1.1440923
|
| [64] |
Egbert G D. Robust multiple-station magnetotelluric data processing[J]. Geophysical Journal International, 1997, 130(2): 475-496. doi: 10.1111/j.1365-246X.1997.tb05663.x
|
| [65] |
Egbert G D, John R. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 1986, 87(1): 173-194. doi: 10.1111/j.1365-246X.1986.tb04552.x
|
| [66] |
Chen J, Heincke B, Jegen M, et al. Using empirical mode decomposition to process marine magnetotelluric data[J]. Geophysical Journal International, 2012, 190(1): 293-309. doi: 10.1111/j.1365-246X.2012.05470.x
|
| [67] |
Fan Y, Snieder R, Slob E, et al. Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture[J]. Geophysics, 2012, 77(2): 135-145. doi: 10.1190/geo2011-0102.1
|
| [68] |
Engelmark F, McKay A, Mattsson J. Application of synthetic aperture concepts to towed streamer EM data[J]. ASEG Extended Abstracts, 2013(1): 1-4.
|
| [69] |
Yoon D, Zhdanov M S. Optimal synthetic aperture method for marine controlled-source EM surveys[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(2): 414-418.
|
| [70] |
Myer D, Constable S, Key K. Broad-band waveforms and robust processing for marine CSEM surveys[J]. Geophysical Journal International, 2011, 184(2): 689-698. doi: 10.1111/j.1365-246X.2010.04887.x
|
| [71] |
于彩霞. 海洋可控源电磁法数据处理研究[D]. 北京: 中国地质大学(北京), 2010.
|
| [72] |
Zhang J, Wu X, Qi Y, et al. Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference[J]. Applied Geophysics, 2013, 10(4): 373-383. doi: 10.1007/s11770-013-0403-3
|
| [73] |
朱忠民. 海洋电磁响应有效信号增强与干扰压制方法研究[D]. 北京: 中国石油大学(北京), 2016.
|
| [74] |
李予国, 段双敏. 海洋可控源电磁数据预处理方法研究[J]. 中国海洋大学学报(自然科学版), 2014(44): 106-112.
Li Yüguo, Duan Shuangmin. Research on marine controlled source electromagnetic data preprocessing method[J]. Periodical of Ocean University of China, 2014(44): 106-112.
|
| [75] |
周文强. 海洋可控源电磁勘探中MT噪声降噪方法及测试平台研究[D]. 青岛: 中国石油大学(华东), 2018.
|
| [76] |
李肃义, 蒋善庆, 王跃洋, 等. 海洋可控源电磁数据中海水扰动噪声的小波校正方法研究[J]. 石油物探, 2016, 55(5): 657-663.
Li Suyi, Jiang Shanqing, Wang Yueyang, et al. Research on wavelet correction method of seawater disturbance noise in marine controlled source electromagnetic data[J]. Geophysical Prospecting for Petroleum, 2016, 55(5): 657-663.
|
| [77] |
林昕, 魏文博, 景建恩, 等. 提高海洋可控源电磁法信噪比的方法研究[J]. 地球物理学进展, 2009, 24(3): 1047-1050.
Lin Xin, Wei Wenbo, Jing Jianen, et al. Research on the method of improving the signal-to-noise ratio of marine controlled source electromagnetic method[J]. Progress in Geophysics, 2009, 24(3): 1047-1050.
|
| [78] |
李泽林. 基于自适应滤波的海洋可控源数据噪声处理方法研究[D]. 武汉: 中国地质大学(武汉), 2017.
|
| [79] |
Kim Y, Jo G, Jung H K. Real-time detection of electric field signal of a moving object using adjustable frequency bands and statistical discriminant for underwater defense[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022(60): 1-8.
|
| [80] |
Cho S H, Jung H K, Lee H, et al. Real-time underwater object detection based on DC resistivity method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016(54): 6833-6842.
|
| [81] |
魏文博. 南黄海海底大地电磁测深试验研究[J]. 地球物理学报, 2009, 52(3): 740-749.
Wei Wenbo. Experimental study on seafloor magnetotelluric sounding in the South Yellow Sea[J]. Chinese Journal of Geophysics, 2009, 52(3): 740-749.
|
| [82] |
Constable S C, Srnka L J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration[J]. Geophysics, 2007, 72(2): 3-WA12. doi: 10.1190/1.2432483
|
| [83] |
Liu C G, Zhao Q X, Luo X H, et al. High-resolution resistivity imaging of a transversely uneven gas hydrate reservoir: A case in the qiongdongnan basin, South China Sea[J]. Remote Sensing, 2023, 15: 2000. doi: 10.3390/rs15082000
|
| [84] |
Bhuiyan A, Vesterås E, Mckay A. Frontier exploration using a towed streamer EM system-barents sea examples[C]//2015 SEG Annual Meeting. New Orleans, Louisiana: 2015 SEG Annual Meeting, 2015: 884-888.
|
| [85] |
Naif S, Key K, Constable S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary[J]. Nature, 2013, 495(7441): 356-359. doi: 10.1038/nature11939
|
| [86] |
Johansen S E, Panzner M, Mitte R, et al. Deep electrical imaging of the ultraslow-spreading Mohns ridge[J]. Nature, 2019, 567(7748): 379. doi: 10.1038/s41586-019-1010-0
|
| [87] |
Zhang L, Baba K, Liang P, et al. The 2011 tohoku tsunami observed by an array of ocean bottom electromagnetometers[J]. Geophysical Research Letters, 2014, 41(14): 4937-4944. doi: 10.1002/2014GL060850
|