• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 4
Aug  2023
Turn off MathJax
Article Contents
NING Wenxi, WANG Yanhua, FAN Liming, ZHANG Xiaojun, XIE Zhizhen. Weak Magnetic Anomaly Signal Extraction Method Based on EEMD and DWT[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 568-574. doi: 10.11993/j.issn.2096-3920.2023-0069
Citation: NING Wenxi, WANG Yanhua, FAN Liming, ZHANG Xiaojun, XIE Zhizhen. Weak Magnetic Anomaly Signal Extraction Method Based on EEMD and DWT[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 568-574. doi: 10.11993/j.issn.2096-3920.2023-0069

Weak Magnetic Anomaly Signal Extraction Method Based on EEMD and DWT

doi: 10.11993/j.issn.2096-3920.2023-0069
  • Received Date: 2023-06-01
  • Accepted Date: 2023-08-09
  • Rev Recd Date: 2023-07-08
  • Available Online: 2023-08-14
  • Magnetic anomaly signal contains rich feature information of targets, which is the basis for target localization and identification. However, the magnetic anomaly generated by the target rapidly attenuates with detection distance, making the weak magnetic anomaly signals of distant targets typically buried in magnetic noise. In view of extracting weak magnetic anomaly signals with a low signal-to-noise ratio, the method of weak magnetic anomaly signal extraction based on ensemble empirical mode decomposition(EEMD) and discrete wavelet transform(DWT) was proposed. Firstly, EEMD was used to decompose the weak magnetic anomaly signal into signal-domain magnetic signal and noise-domain magnetic signal. Then, the approximate coefficient of DWT was used to characterize the characteristics of the low-frequency signal and obtain the low-frequency noise-domain magnetic signal. Finally, the signal-domain magnetic signal was combined with the low-frequency noise-domain magnetic signal to obtain the weak magnetic anomaly signal. In order to validate the effectiveness of this method, simulation experiments and field experiments were carried out. The experimental results show that this method can effectively suppress background magnetic noise and extract weak magnetic anomaly signals of targets. This method can also offer effective data for the localization and identification of distant targets.

     

  • loading
  • [1]
    Chen L, Feng Y, Wu P, et al. An innovative magnetic anomaly detection algorithm based on signal modulation[J]. IEEE Transactions on Magnetics, 2020, 56(9): 1-9.
    [2]
    Sanchez V, Li Y, Nabighian M N, et al. Numerical modeling of higher order magnetic moments in UXO discrimination[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2568-83. doi: 10.1109/TGRS.2008.918090
    [3]
    Zalevsky Z, Bregman Y, Salomonski N, et al. Resolution enhanced magnetic sensing system for wide coverage real time UXO detection[J]. Journal of Applied Geophysics, 2012, 84: 70-76. doi: 10.1016/j.jappgeo.2012.06.003
    [4]
    Beran L, Billings S, Oldenburg D. Incorporating uncertainty in unexploded ordnance discrimination[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3071-80. doi: 10.1109/TGRS.2011.2112772
    [5]
    Xiang X, Yu C, Niu Z, et al. Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance[J]. Sensors, 2016, 16(8): 1335. doi: 10.3390/s16081335
    [6]
    Liu D, Xu X, Fei C, et al. Direction identification of a moving ferromagnetic object by magnetic anomaly[J]. Sensors and Actuators A: Physical, 2015, 229: 147-153. doi: 10.1016/j.sna.2015.03.035
    [7]
    McGary J E. Real-time tumor tracking for four-dimensional computed tomography using SQUID magnetometers[J]. IEEE Transactions on Magnetics, 2009, 45(9): 3351-61. doi: 10.1109/TMAG.2009.2020430
    [8]
    Sheinker A, Ginzburg B, Salomonski N, et al. Magnetic anomaly detection using high-order crossing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 50(4): 1095-103.
    [9]
    Tang Y, Liu Z, Pan M, et al. Detection of magnetic anomaly signal based on information entropy of differential signal[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 512-16. doi: 10.1109/LGRS.2018.2797365
    [10]
    Wan C, Pan M, Zhang Q, et al. Magnetic anomaly detection based on stochastic resonance[J]. Sensors and Actuators A: Physical, 2018, 278: 11-17. doi: 10.1016/j.sna.2018.05.009
    [11]
    Liu Y, Liu Z, Pan M, et al. Magnetic anomaly signal space analysis and its application in noise suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(1): 130-34.
    [12]
    Qin Y, Li K, Yao C, et al. Magnetic anomaly detection using full magnetic gradient orthonormal basis function[J]. IEEE Sensors Journal, 2020, 20(21): 12928-40. doi: 10.1109/JSEN.2020.3003680
    [13]
    Fan L, Kang C, Hu H, et al. Gradient signals analysis of scalar magnetic anomaly using orthonormal basis functions[J]. Measurement Science and Technology, 2020, 31(11): 115105. doi: 10.1088/1361-6501/ab9701
    [14]
    Fan L, Kang C, Wang H, et al. Adaptive magnetic anomaly detection method with ensemble empirical mode decomposition and minimum entropy feature[J]. Journal of Sensors, 2020, 2020: 1-10.
    [15]
    Ge J, Wang S, Dong H, et al. Real-time detection of moving magnetic target using distributed scalar sensor based on hybrid algorithm of particle swarm optimization and Gauss–Newton method[J]. IEEE Sensors Journal, 2020, 20(18): 10717-23. doi: 10.1109/JSEN.2020.2994324
    [16]
    杜德锋, 陈帅, 王磊, 等. 一种近海水域磁异常信号检测方法[J]. 水下无人系统学报, 2023, 31(2): 269-77. doi: 10.11993/j.issn.2096-3920.202203008

    Du Defeng, Chen Shuai, Wang Lei, et al. A detection method of magnetic anomaly signal in offshore waters[J]. Journal of Unmanned Undersea Systems, 2023, 31(2): 269-77. doi: 10.11993/j.issn.2096-3920.202203008
    [17]
    Hu M, Jing S, Du C, et al. Magnetic dipole target signal detection via convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
    [18]
    Fan L, Kang C, Wang H, et al. Adaptive magnetic anomaly detection method using support vector machine[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 1-5.
    [19]
    Liu S, Chen Z, Pan M, et al. Magnetic anomaly detection based on full connected neural network[J]. IEEE Access, 2019, 7: 182198-206. doi: 10.1109/ACCESS.2019.2943544
    [20]
    李启飞, 吴芳, 韩蕾蕾, 等. 基于 AlexNet 迁移学习的磁异常信号检测方法[J]. 水下无人系统学报, 2020, 28(2): 162-167.

    Li Qifei, Wu Fang, Han Leilei, et al. Detection method of magnetic anomaly signals based on alexnet transfer learning[J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 162-167.
    [21]
    Nara T, Suzuki S, Ando S. A closed-form formula for magnetic dipole localization by measurement of its magnetic field and spatial gradients[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3291-93. doi: 10.1109/TMAG.2006.879151
    [22]
    Gao J, Wang J, Zhang L, et al. Magnetic signature analysis for smart security system based on TMR magnetic sensor array[J]. IEEE Sensors Journal, 2019, 19(8): 3149-55. doi: 10.1109/JSEN.2019.2891082
    [23]
    Zhao M, Kang M, Tang B, et al. Multiple wavelet coefficients fusion in deep residual networks for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, 66(6): 4696-706.
    [24]
    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [25]
    Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. doi: 10.1142/S1793536909000047
    [26]
    Kopsinis Y, McLaughlin S. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on signal Processing, 2009, 57(4): 1351-1362. doi: 10.1109/TSP.2009.2013885
    [27]
    Huang N E. Hilbert-Huang transform and its applications[M]. Singapore: World Scientific, 2014: 99-116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(494) PDF Downloads(97) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return