• 中国科技核心期刊
  • Scopus收录期刊
  • DOAJ收录期刊
  • JST收录期刊
  • Euro Pub收录期刊
Volume 31 Issue 4
Aug  2023
Turn off MathJax
Article Contents
KE Jianhan, YUE Junbai, CHENG Xuemin, BI Hongsheng. Underwater In-Situ Monitoring Technology for Marine Organisms and Its Information Expansion in Polarization Dimensionn[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 614-623. doi: 10.11993/j.issn.2096-3920.2023-0067
Citation: KE Jianhan, YUE Junbai, CHENG Xuemin, BI Hongsheng. Underwater In-Situ Monitoring Technology for Marine Organisms and Its Information Expansion in Polarization Dimensionn[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 614-623. doi: 10.11993/j.issn.2096-3920.2023-0067

Underwater In-Situ Monitoring Technology for Marine Organisms and Its Information Expansion in Polarization Dimensionn

doi: 10.11993/j.issn.2096-3920.2023-0067
  • Received Date: 2023-05-25
  • Accepted Date: 2023-07-05
  • Rev Recd Date: 2023-06-30
  • Available Online: 2023-07-10
  • Monitoring and regulating the marine environment and reasonably developing and utilizing marine natural resources require advanced observation methods. Marine optical technology, as a mature information perception method with high spatio-temporal resolution and high-throughput data collection capabilities, plays an important role in marine scientific research. The research on polarization optics has expanded the information modality of traditional optical imaging and measurement technologies, and a large number of research and applications in ocean observation and its derivative fields represented by ecology have emerged. This paper reviewed the research progress of polarization optics technology in the field of marine environmental observation and marine biological observation. On the one hand, polarization optics assists in the in-depth analysis of complex physical processes and environmental physicochemical properties. On the other hand, polarization optics achieves incremental functions in the field of biological observation, such as expanding imaging dimensions, detecting specific targets, and recognizing biophysical and chemical characteristics. This paper also systematically introduced the models of polarization optical imaging and measurement schemes. In addition, combined with a series of works carried out by the research team in the field of underwater in-situ biological monitoring, the paper discussed the prospects of introducing polarization optics to achieve a new generation of real-time on-site monitoring systems.

     

  • loading
  • [1]
    Wang L, Fan S, Liu Y, et al. A review of methods for ship detection with electro-optical images in marine environments[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1408. doi: 10.3390/jmse9121408
    [2]
    尹路, 李延斌, 马金钢. 海洋观测技术现状综述[J]. 舰船电子工程, 2013, 33(11): 4-7. doi: 10.3969/j.issn.1627-9730.2013.11.002

    Yin Lu, Li Yanbin, Ma Jingang. Present status of marine observation technology[J]. Ship Electronic Engineering, 2013, 33(11): 4-7. doi: 10.3969/j.issn.1627-9730.2013.11.002
    [3]
    Yang J, Gong P, Fu R, et al. The role of satellite remote sensing in climate change studies[J]. Nature Climate Change, 2013, 3(10): 875-883. doi: 10.1038/nclimate1908
    [4]
    Mahrad B E, Newton A, Icely J D, et al. Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: A review[J]. Remote Sensing, 2020, 12(14): 2313. doi: 10.3390/rs12142313
    [5]
    Shen L, Xu H, Guo X. Satellite remote sensing of harmful algal blooms(HABs) and a potential synthesized framework[J]. Sensors, 2012, 12(6): 7778-7803. doi: 10.3390/s120607778
    [6]
    Shahbazi M, Théau J, Ménard P. Recent applications of unmanned aerial imagery in natural resource management[J]. Mapping Sciences & Remote Sensing, 2014, 51(4): 339-365.
    [7]
    Yang Z, Yu X, Dedman S, et al. UAV remote sensing applications in marine monitoring: Knowledge visualization and review[J]. Science of the Total Environment, 2022, 838: 155939. doi: 10.1016/j.scitotenv.2022.155939
    [8]
    Jing W, Liu C, Li T, et al. Path planning and navigation of oceanic autonomous sailboats and vessels: A survey[J]. Journal of Ocean University of China, 2020, 19: 609-621. doi: 10.1007/s11802-020-4144-7
    [9]
    杨跃忠, 曹文熙, 孙兆华, 等. 海洋高光谱辐射实时观测系统的研制[J]. 光学学报, 2009, 29(1): 102-107. doi: 10.3788/AOS20092901.0102

    Yang Yuezhong, Cao Wenxi, Sun Zhaohua, et al. Development of real-time hyperspectral radiation sea-observation system[J]. Acta Optica Sinica, 2009, 29(1): 102-107. doi: 10.3788/AOS20092901.0102
    [10]
    Voss K J, Johnson C B, Yarbrough M A, et al. An overview of the marine optical buoy (MOBY): Past, present and future[C]//Proceedings of the D-240 FRM4SOC-PROC1 Proceedings of WKP-1(PROC-1) Fiducial Reference Measurements for Satellite Ocean Colour (FRM4SOC). Tartu, ESA: Estonia, 2017: 8-13.
    [11]
    Zhang D, Pan G, Shi Y, et al. Investigation of the resistance characteristics of a multi-AUV system[J]. Applied Ocean Research, 2019, 89: 59-70. doi: 10.1016/j.apor.2019.05.007
    [12]
    Tian W, Song B, Ding H. Numerical research on the influence of surface waves on the hydrodynamic performance of an AUV[J]. Ocean Engineering, 2019, 183: 40-56. doi: 10.1016/j.oceaneng.2019.04.007
    [13]
    Su R, Zhang D, Li C, et al. Localization and data collection in AUV-aided underwater sensor networks: Challenges and opportunities[J]. IEEE Network, 2019, 33(6): 86-93. doi: 10.1109/MNET.2019.1800425
    [14]
    Khan J U, Cho H S. A distributed data-gathering protocol using AUV in underwater sensor networks[J]. Sensors, 2015, 15(8): 19331-19350. doi: 10.3390/s150819331
    [15]
    Hoteit I, Abualnaja Y, Afzal S, et al. Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the red sea[J]. Bulletin of the American Meteorological Society, 2021, 102(1): 99-122. doi: 10.1175/BAMS-D-19-0005.1
    [16]
    Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
    [17]
    Lombard F, Boss E, Waite A M, et al. Globally consistent quantitative observations of planktonic ecosystems[J]. Frontiers in Marine Science, 2019, 6: 196. doi: 10.3389/fmars.2019.00196
    [18]
    Dutkiewicz S, Hickman A E, Jahn O, et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model[J]. Biogeosciences, 2015, 12(14): 4447-4481. doi: 10.5194/bg-12-4447-2015
    [19]
    Bi H, Song J, Zhao J, et al. Temporal characteristics of plankton indicators in coastal waters: High-frequency data from PlanktonScope[J]. Journal of Sea Research, 2022, 189: 102283. doi: 10.1016/j.seares.2022.102283
    [20]
    Bi H, Cheng Y, Cheng X, et al. Taming the data deluge: a novel end-to-end deep learning framework for classifying marine biological and environmental images[J/OL]. bioRxiv, (2022-10-20)[2023-05-25]. https://www.biorxiv.org/content/10.1101/2022.10.20.509848v1.abstract.
    [21]
    刘岱, 应轲臻, 蔡中华, 等. 大亚湾西南海域尖笔帽螺 2020 年 7 月暴发期内的分布特征[J]. 海洋与湖沼, 2021, 52(6): 1438-1447.

    Liu Dai, Ying Kezhen, Cai Zhonghua, et al. Outburst of creseis acicula in southwest daya bay in July 2020[J]. Oceanologia et Limnologia Sinica, 2021, 52(6): 1438-1447.
    [22]
    Song J T, Bi H S, Cai Z H, et al. Early warning of noctiluca scintillans blooms using in-situ plankton imaging system: An example from Dapeng Bay, PR China[J]. Ecological Indicators, 2020, 112: 10612.
    [23]
    李淑军, 姜会林, 朱京平, 等. 偏振成像探测技术发展现状及关键技术[J]. 中国光学, 2013, 6(6): 803-809.

    Li Shujun, Jiang Huilin, Zhu Jingping, et al. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809.
    [24]
    何宏辉, 曾楠, 廖然, 等. 偏振光成像技术用于肿瘤病变检测的研究进展[J]. 生物化学与生物物理进展, 2015, 42(5): 419-433.

    He Honghui, Zeng Nan, Liao Ran, et al. Progresses of polarization imaging techniques and their applications in cancer detections[J]. Progress in Biochemistry and Biophysics, 2015, 42(5): 419-433.
    [25]
    Schmitt J M, Gandjbakhche A H, Bonner R F. Use of polarized light to discriminate short-path photons in a multiply scattering medium[J]. Applied optics, 1992, 31(30): 6535-6546. doi: 10.1364/AO.31.006535
    [26]
    Schechner Y Y, Karpel N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. doi: 10.1109/JOE.2005.850871
    [27]
    Li D, He H, Zeng N, et al. Polarization imaging and scattering model of cancerous liver tissues[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): 1350025. doi: 10.1142/S1793545813500259
    [28]
    McNichols R J, Cote G L. Optical glucose sensing in biological fluids: An overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16. doi: 10.1117/1.429962
    [29]
    Wang F, Yin C, Wang Y. Research of polarization imaging detection method for water surface target in foggy weather[C]//International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications. Beijing, China: SPIE, 2013.
    [30]
    Wang P, Li D, Wang X, et al. Analyzing polarization transmission characteristics in foggy environments based on the indices of polarimetric purity[J]. IEEE Access, 2020, 8: 227703-227709. doi: 10.1109/ACCESS.2020.3045993
    [31]
    Yang Y, Wang L, Huang M, et al. Polarization imaging based bruise detection of nectarine by using ResNet-18 and ghost bottleneck[J]. Postharvest Biology and Technology, 2022, 189: 111916. doi: 10.1016/j.postharvbio.2022.111916
    [32]
    Kim S C, Kim E S. Performance analysis of stereoscopic three-dimensional projection display systems[J]. 3D Research, 2010, 1(1): 1-16. doi: 10.1007/3DRes.01(2010)1
    [33]
    Huang B, Liu T, Hu H, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838. doi: 10.1364/OE.24.009826
    [34]
    Cartron L, Josef N, Lerner A, et al. Polarization vision can improve object detection in turbid waters by cuttlefish[J]. Journal of Experimental Marine Biology and Ecology, 2013, 447: 80-85. doi: 10.1016/j.jembe.2013.02.013
    [35]
    Fu Q, Si L, Liu J, et al. Design and experimental study of a polarization imaging optical system for oil spills on sea surfaces[J]. Applied Optics, 2022, 61(21): 6330-6338. doi: 10.1364/AO.456305
    [36]
    Shamanaev V S. Detection of schools of marine fish using polarization laser sensing[J]. Atmospheric and Oceanic Optics, 2018, 31: 358-364. doi: 10.1134/S1024856018040103
    [37]
    Gil J J, Ossikovski R. Polarized light and the Mueller matrix approach[M]. Boca Raton: CRC press, 2022.
    [38]
    Yeh P. Extended Jones matrix method[J]. JOSA, 1982, 72(4): 507-513. doi: 10.1364/JOSA.72.000507
    [39]
    Pezzaniti J L, Chipman R A. Mueller matrix imaging polarimetry[J]. Optical Engineering, 1995, 34(6): 1558-1568. doi: 10.1117/12.206161
    [40]
    Jacques S L, Ramella-Roman J C, Lee K. Imaging skin pathology with polarized light[J]. Journal of Biomedical Optics, 2002, 7(3): 329-340. doi: 10.1117/1.1484498
    [41]
    Ghosh N, Vitkin I A. Tissue polarimetry: concepts, challenges, applications, and outlook[J]. Journal of Biomedical Optics, 2011, 16(11): 110801-110830. doi: 10.1117/1.3652896
    [42]
    Chung J R, Delaughter A H, Baba J S, et al. Interpretation of Mueller matrix images based on polar decomposition and statistical discriminators to distinguish skin cancer[C]//Laser-Tissue Interaction XIV. San Jose, United States: SPIE, 2003.
    [43]
    Morio J, Goudail F. Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices[J]. Optics Letters, 2004, 29(19): 2234-2236. doi: 10.1364/OL.29.002234
    [44]
    He H, Zeng N, Du E, et al. A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien[J]. Photonics & Lasers in Medicine, 2013, 2(2): 129-137.
    [45]
    Liu Y, Kim Y L, Li X, et al. Investigation of depth selectivity of polarization gating for tissue characterization[J]. Optics Express, 2005, 13(2): 601-611. doi: 10.1364/OPEX.13.000601
    [46]
    Tyo J S, Rowe M P, Pugh E N, et al. Target detection in optically scattering media by polarization-difference imaging[J]. Applied Optics, 1996, 35(11): 1855-1870. doi: 10.1364/AO.35.001855
    [47]
    李轩, 刘飞, 邵晓鹏. 偏振三维成像技术的原理和研究进展[J]. 红外与毫米波学报, 2021, 40(2): 248-262.

    Li Xuan, Liu Fei, Shao Xiaopeng. Research progress on polarization 3D imaging technology[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 248-262.
    [48]
    Meng J, Cao T, Peng J, et al. Polarized image near-natural color fusion algorithm for target detection[J]. Applied Optics, 2022, 61(6): 1323-1330. doi: 10.1364/AO.446207
    [49]
    Zappa C J, Banner M L, Schultz H, et al. Retrieval of short ocean wave slope using polarimetric imaging[J]. Measurement Science and Technology, 2008, 19(5): 055503. doi: 10.1088/0957-0233/19/5/055503
    [50]
    Tonizzo A, Zhou J, Gilerson A, et al. Polarized light in coastal waters: Hyperspectral and multiangular analysis[J]. Optics Express, 2009, 17(7): 5666-5683. doi: 10.1364/OE.17.005666
    [51]
    You Y, Kattawar G W, Voss K J, et al. Polarized light field under dynamic ocean surfaces: Numerical modeling compared with measurements[J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): 1-13.
    [52]
    Foster R, Gilerson A. Polarized transfer functions of the ocean surface for above-surface determination of the vector submarine light field[J]. Applied Optics, 2016, 55(33): 9476-9494. doi: 10.1364/AO.55.009476
    [53]
    Li H, Perrie W. Detection of oil spills with the second stokes parameter of the hybird polarimetric SAR[C]//2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS. Melbourne, Australia: IEEE, 2013: 3526-3529.
    [54]
    Guan L, Li S, Zhai L, et al. Study on skylight polarization patterns over the ocean for polarized light navigation application[J]. Applied Optics, 2018, 57(21): 6243-6251. doi: 10.1364/AO.57.006243
    [55]
    Xue F, Jin W, Qiu S, et al. Airborne optical polarization imaging for observation of submarine Kelvin wakes on the sea surface: Imaging chain and simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 136-154. doi: 10.1016/j.isprsjprs.2021.06.001
    [56]
    Beardsley G F. Mueller scattering matrix of sea water[J]. JOSA, 1968, 58(1): 52-57. doi: 10.1364/JOSA.58.000052
    [57]
    Kadyshevich Y A, Lyubovtseva Y S, Rozenberg G V. Light-scattering matrices of pacific and atlantic ocean waters[J]. Izvestiya Atmospheric and Oceanic Physics, 1976, 12: 106.
    [58]
    Voss K J, Fry E S. Measurement of the mueller matrix for ocean water[J]. Applied optics, 1984, 23(23): 4427-4439. doi: 10.1364/AO.23.004427
    [59]
    Shashar N, Sabbah S, Cronin T W. Transmission of linearly polarized light in seawater: Implications for polarization signaling[J]. Journal of Experimental Biology, 2004, 207(20): 3619-3628. doi: 10.1242/jeb.01187
    [60]
    Johnson L E. Enhanced early detection and enumeration of zebra mussel(Dreissena spp.) veligers using cross-polarized light microscopy[J]. Hydrobiologia, 1995, 312: 139-146. doi: 10.1007/BF00020769
    [61]
    Otani Y, Endo N, Hagen N, et al. Imaging microplastics consumed by water organisms using a full-Stokes polarization camera[C]//Biomedical Imaging and Sensing Conference 2021. Japan: SPIE, 2021.
    [62]
    Kagel S M, Garcia M, Cummings M E, et al. Comparison of the polarization contrast of gelatinous zooplankton and a transparent single-use plastic bag—Implications for marine animals[J]. Marine Pollution Bulletin, 2021, 168: 112438. doi: 10.1016/j.marpolbul.2021.112438
    [63]
    Collard F, Gilbert B, Compère P, et al. Microplastics in livers of European anchovies(Engraulis encrasicolus, L.)[J]. Environmental Pollution, 2017, 229: 1000-1005. doi: 10.1016/j.envpol.2017.07.089
    [64]
    Fang M, Dong D, Zeng C, et al. Polarization-sensitive optical projection tomography for muscle fiber imaging[J]. Scientific Reports, 2016, 6(1): 19241. doi: 10.1038/srep19241
    [65]
    赵晨, 张亮, 倪原. 荧光偏振技术在生命科学中的研究进展[J]. 现代生物医学进展, 2010, 10(16): 3154-3156.

    Zhao Chen, Zhang Liang, Ni yuan. Development of fluorescence polarization in life sciences[J]. Progress in Modern Biomedicine, 2010, 10(16): 3154-3156.
    [66]
    De Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography——A review[J]. Biomedical Optics Express, 2017, 8(3): 1838-1873. doi: 10.1364/BOE.8.001838
    [67]
    Yaroslavsky A N, Feng X, Muzikansky A, et al. Fluorescence polarization of methylene blue as a quantitative marker of breast cancer at the cellular level[J]. Scientific Reports, 2019, 9(1): 940. doi: 10.1038/s41598-018-38265-0
    [68]
    Otero P, Alfonso A, Alfonso C, et al. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples[J]. Analytica Chimica Acta, 2011, 701(2): 200-208. doi: 10.1016/j.aca.2011.05.034
    [69]
    Quinby-Hunt M S, Hunt A J, Lofftus K, et al. Polarized-light scattering studies of marine chlorella[J]. Limnology and Oceanography, 1989, 34(8): 1587-1600. doi: 10.4319/lo.1989.34.8.1587
    [70]
    Wang Y, Liao R, Dai J, et al. Differentiation of suspended particles by polarized light scattering at 120[J]. Optics Express, 2018, 26(17): 22419-22431. doi: 10.1364/OE.26.022419
    [71]
    Svensen Ø, Stamnes J J, Kildemo M, et al. Mueller matrix measurements of algae with different shape and size distributions[J]. Applied Optics, 2011, 50(26): 5149-5157. doi: 10.1364/AO.50.005149
    [72]
    Li J, Liu H, Liao R, et al. Recognition of microplastics suspended in seawater via refractive index by Mueller matrix polarimetry[J]. Marine Pollution Bulletin, 2023, 188: 114706. doi: 10.1016/j.marpolbul.2023.114706
    [73]
    Wang Y, Dai J, Liao R, et al. Characterization of physiological states of the suspended marine microalgae using polarized light scattering[J]. Applied Optics, 2020, 59(5): 1307-1312. doi: 10.1364/AO.377332
    [74]
    Noorduin W L, Bode A A C, Van der Meijden M, et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light[J]. Nature Chemistry, 2009, 1(9): 729-732. doi: 10.1038/nchem.416
    [75]
    Gurjar R S, Backman V, Perelman L T, et al. Imaging human epithelial properties with polarized light-scattering spectroscopy[J]. Nature Medicine, 2001, 7: 1245-1248. doi: 10.1038/nm1101-1245
    [76]
    Liu B, Yao Y, Liu R, et al. Mueller polarimetric imaging for characterizing the collagen microstructures of breast cancer tissues in different genotypes[J]. Optics Communications, 2019, 433: 60-67. doi: 10.1016/j.optcom.2018.09.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(583) PDF Downloads(61) Cited by()
    Proportional views
    Related
    Service
    Subscribe

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return